Advertisement

ZZ production at the LHC: NLO QCD corrections to the loop-induced gluon fusion channel

  • Massimiliano Grazzini
  • Stefan KallweitEmail author
  • Marius Wiesemann
  • Jeong Yeon Yook
Open Access
Regular Article - Theoretical Physics
  • 20 Downloads

Abstract

We consider QCD radiative corrections to the production of four charged leptons in hadron collisions. We present the computation of the next-to-leading order QCD corrections to the loop-induced gluon fusion contribution. Our predictions include, for the first time, also the quark-gluon partonic channels. The computed corrections, which are formally of \( \mathcal{O}\left({\alpha}_{\mathrm{S}}^3\right) \), turn out to increase the loop-induced Born-level result by an amount ranging from 75% to 71% as \( \sqrt{s} \) ranges from 8 to 13 TeV. We combine our result with state-of-the-art NNLO corrections to the quark annihilation channel, and present updated predictions for fiducial cross sections and distributions for this process.

Keywords

NLO Computations QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    ATLAS collaboration, Evidence for the spin-0 nature of the Higgs boson using ATLAS data, Phys. Lett. B 726 (2013) 120 [arXiv:1307.1432] [INSPIRE].
  4. [4]
    CMS collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state, Phys. Rev. D 89 (2014) 092007 [arXiv:1312.5353] [INSPIRE].
  5. [5]
    CMS collaboration, Limits on the Higgs boson lifetime and width from its decay to four charged leptons, Phys. Rev. D 92 (2015) 072010 [arXiv:1507.06656] [INSPIRE].
  6. [6]
    ATLAS collaboration, Constraints on off-shell Higgs boson production and the Higgs boson total width in ZZ → 4ℓ and ZZ → 22ν final states with the ATLAS detector, Phys. Lett. B 786 (2018) 223 [arXiv:1808.01191] [INSPIRE].
  7. [7]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  8. [8]
    J. Ohnemus and J.F. Owens, An order α s calculation of hadronic ZZ production, Phys. Rev. D 43 (1991) 3626 [INSPIRE].ADSGoogle Scholar
  9. [9]
    B. Mele, P. Nason and G. Ridolfi, QCD radiative corrections to Z boson pair production in hadronic collisions, Nucl. Phys. B 357 (1991) 409 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Ohnemus, Hadronic ZZ, W W + and W ± Z production with QCD corrections and leptonic decays, Phys. Rev. D 50 (1994) 1931 [hep-ph/9403331] [INSPIRE].
  11. [11]
    J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].
  12. [12]
    L.J. Dixon, Z. Kunszt and A. Signer, Vector boson pair production in hadronic collisions at order α s : lepton correlations and anomalous couplings, Phys. Rev. D 60 (1999) 114037 [hep-ph/9907305] [INSPIRE].
  13. [13]
    L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(α s) production of W + W , W ± Z, ZZ, W ± γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [INSPIRE].
  14. [14]
    E. Accomando, A. Denner and A. Kaiser, Logarithmic electroweak corrections to gauge-boson pair production at the LHC, Nucl. Phys. B 706 (2005) 325 [hep-ph/0409247] [INSPIRE].
  15. [15]
    A. Bierweiler, T. Kasprzik and J.H. Kühn, Vector-boson pair production at the LHC to O(α 3) accuracy, JHEP 12 (2013) 071 [arXiv:1305.5402] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Baglio, L.D. Ninh and M.M. Weber, Massive gauge boson pair production at the LHC: a next-to-leading order story, Phys. Rev. D 88 (2013) 113005 [Erratum ibid. D 94 (2016) 099902] [arXiv:1307.4331] [INSPIRE].
  17. [17]
    B. Biedermann, A. Denner, S. Dittmaier, L. Hofer and B. Jäger, Electroweak corrections to ppμ + μ e + e + X at the LHC: a Higgs background study, Phys. Rev. Lett. 116 (2016) 161803 [arXiv:1601.07787] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    B. Biedermann, A. Denner, S. Dittmaier, L. Hofer and B. Jäger, Next-to-leading-order electroweak corrections to the production of four charged leptons at the LHC, JHEP 01 (2017) 033 [arXiv:1611.05338] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Kallweit, J.M. Lindert, S. Pozzorini and M. Schönherr, NLO QCD+EW predictions for 22ν diboson signatures at the LHC, JHEP 11 (2017) 120 [arXiv:1705.00598] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Chiesa, A. Denner and J.-N. Lang, Anomalous triple-gauge-boson interactions in vector-boson pair production with RECOLA2, Eur. Phys. J. C 78 (2018) 467 [arXiv:1804.01477] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    T. Binoth, T. Gleisberg, S. Karg, N. Kauer and G. Sanguinetti, NLO QCD corrections to ZZ + jet production at hadron colliders, Phys. Lett. B 683 (2010) 154 [arXiv:0911.3181] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    E.W.N. Glover and J.J. van der Bij, Z boson pair production via gluon fusion, Nucl. Phys. B 321 (1989) 561 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    D.A. Dicus, C. Kao and W.W. Repko, Gluon production of gauge bosons, Phys. Rev. D 36 (1987) 1570 [INSPIRE].ADSGoogle Scholar
  24. [24]
    T. Matsuura and J.J. van der Bij, Characteristics of leptonic signals for Z boson pairs at hadron colliders, Z. Phys. C 51 (1991) 259 [INSPIRE].Google Scholar
  25. [25]
    C. Zecher, T. Matsuura and J.J. van der Bij, Leptonic signals from off-shell Z boson pairs at hadron colliders, Z. Phys. C 64 (1994) 219 [hep-ph/9404295] [INSPIRE].
  26. [26]
    T. Binoth, N. Kauer and P. Mertsch, Gluon-induced QCD corrections to \( pp\to ZZ\to \ell \overline{\ell}{\ell}^{\prime }{\overline{\ell}}^{\prime } \), in Proceedings, 16th International Workshop on Deep Inelastic Scattering and Related Subjects (DIS 2008), London, U.K. 7–11 April 2008, pg. 142 [arXiv:0807.0024] [INSPIRE].
  27. [27]
    J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    N. Kauer, Interference effects for \( H\to WW/ZZ\to \ell {\overline{\nu}}_{\ell}\overline{\ell}{\nu}_{\ell } \) searches in gluon fusion at the LHC, JHEP 12 (2013) 082 [arXiv:1310.7011] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    F. Cascioli, S. Höche, F. Krauss, P. Maierhöfer, S. Pozzorini and F. Siegert, Precise Higgs-background predictions: merging NLO QCD and squared quark-loop corrections to four-lepton + 0, 1 jet production, JHEP 01 (2014) 046 [arXiv:1309.0500] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC using full analytic results for gge e + μ μ +, JHEP 04 (2014) 060 [arXiv:1311.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC, PoS(LL2014)008 (2014) [arXiv:1408.1723] [INSPIRE].
  32. [32]
    N. Kauer, C. O’Brien and E. Vryonidou, Interference effects for \( H\to WW\to \ell \nu q{\overline{q}}^{\prime } \) and \( H\to ZZ\to \ell \overline{\ell}q\overline{q} \) searches in gluon fusion at the LHC, JHEP 10 (2015) 074 [arXiv:1506.01694] [INSPIRE].
  33. [33]
    F. Caola, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to ZZ production in gluon fusion at the LHC, Phys. Rev. D 92 (2015) 094028 [arXiv:1509.06734] [INSPIRE].ADSGoogle Scholar
  34. [34]
    F. Caola, M. Dowling, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to vector boson pair production in gluon fusion including interference effects with off-shell Higgs at the LHC, JHEP 07 (2016) 087 [arXiv:1605.04610] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Alioli, F. Caola, G. Luisoni and R. Röntsch, ZZ production in gluon fusion at NLO matched to parton-shower, Phys. Rev. D 95 (2017) 034042 [arXiv:1609.09719] [INSPIRE].ADSGoogle Scholar
  36. [36]
    F. Caola, J.M. Henn, K. Melnikov, A.V. Smirnov and V.A. Smirnov, Two-loop helicity amplitudes for the production of two off-shell electroweak bosons in gluon fusion, JHEP 06 (2015) 129 [arXiv:1503.08759] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for ggV 1 V 2 → 4 leptons, JHEP 06 (2015) 197 [arXiv:1503.08835] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    F. Cascioli et al., ZZ production at hadron colliders in NNLO QCD, Phys. Lett. B 735 (2014) 311 [arXiv:1405.2219] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    G. Heinrich, S. Jahn, S.P. Jones, M. Kerner and J. Pires, NNLO predictions for Z-boson pair production at the LHC, JHEP 03 (2018) 142 [arXiv:1710.06294] [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals for \( q\overline{q}\to VV \), JHEP 06 (2014) 032 [arXiv:1404.4853] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    F. Caola, J.M. Henn, K. Melnikov, A.V. Smirnov and V.A. Smirnov, Two-loop helicity amplitudes for the production of two off-shell electroweak bosons in quark-antiquark collisions, JHEP 11 (2014) 041 [arXiv:1408.6409] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Gehrmann, A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for \( q\overline{q}^{\prime}\to {V}_1{V}_2\to 4 \) leptons, JHEP 09 (2015) 128 [arXiv:1503.04812] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Grazzini, S. Kallweit and D. Rathlev, ZZ production at the LHC: fiducial cross sections and distributions in NNLO QCD, Phys. Lett. B 750 (2015) 407 [arXiv:1507.06257] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Kallweit and M. Wiesemann, ZZ production at the LHC: NNLO predictions for 22ν and 4ℓ signatures, Phys. Lett. B 786 (2018) 382 [arXiv:1806.05941] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    T. Gehrmann et al., W + W production at hadron colliders in next to next to leading order QCD, Phys. Rev. Lett. 113 (2014) 212001 [arXiv:1408.5243] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Grazzini, S. Kallweit, S. Pozzorini, D. Rathlev and M. Wiesemann, W + W production at the LHC: fiducial cross sections and distributions in NNLO QCD, JHEP 08 (2016) 140 [arXiv:1605.02716] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    F. Caola, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to W + W production through gluon fusion, Phys. Lett. B 754 (2016) 275 [arXiv:1511.08617] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    ATLAS collaboration, ZZ + ′+ ′− cross-section measurements and search for anomalous triple gauge couplings in 13 TeV pp collisions with the ATLAS detector, Phys. Rev. D 97 (2018) 032005 [arXiv:1709.07703] [INSPIRE].
  49. [49]
    ATLAS collaboration, Measurement of the W + W production cross section in pp collisions at a centre-of-mass energy of \( \sqrt{s}=13 \) TeV with the ATLAS experiment, Phys. Lett. B 773 (2017) 354 [arXiv:1702.04519] [INSPIRE].
  50. [50]
    CMS collaboration, Measurements of the ppZZ production cross section and the Z → 4ℓ branching fraction and constraints on anomalous triple gauge couplings at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 78 (2018) 165 [Erratum ibid. C 78 (2018) 515] [arXiv:1709.08601] [INSPIRE].
  51. [51]
    CMS collaboration, Measurement of the WW cross section pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-SMP-16-006, CERN, Geneva, Switzerland (2016).
  52. [52]
    M. Grazzini, S. Kallweit and M. Wiesemann, Fully differential NNLO computations with MATRIX, Eur. Phys. J. C 78 (2018) 537 [arXiv:1711.06631] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].
  54. [54]
    M. Grazzini, S. Kallweit, D. Rathlev and A. Torre, Zγ production at hadron colliders in NNLO QCD, Phys. Lett. B 731 (2014) 204 [arXiv:1309.7000] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Grazzini, S. Kallweit and D. Rathlev, Wγ and Zγ production at the LHC in NNLO QCD, JHEP 07 (2015) 085 [arXiv:1504.01330] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, W ± Z production at hadron colliders in NNLO QCD, Phys. Lett. B 761 (2016) 179 [arXiv:1604.08576] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, W ± Z production at the LHC: fiducial cross sections and distributions in NNLO QCD, JHEP 05 (2017) 139 [arXiv:1703.09065] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    D. de Florian et al., Differential Higgs boson pair production at next-to-next-to-leading order in QCD, JHEP 09 (2016) 151 [arXiv:1606.09519] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M. Grazzini et al., Higgs boson pair production at NNLO with top quark mass effects, JHEP 05 (2018) 059 [arXiv:1803.02463] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, Transverse-momentum resummation for vector-boson pair production at NNLL+NNLO, JHEP 08 (2015) 154 [arXiv:1507.02565] [INSPIRE].CrossRefGoogle Scholar
  61. [61]
    E. Re, M. Wiesemann and G. Zanderighi, NNLOPS accurate predictions for W + W production, JHEP 12 (2018) 121 [arXiv:1805.09857] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    S. Kallweit, J.M. Lindert, P. Maierhöfer, S. Pozzorini and M. Schönherr, NLO electroweak automation and precise predictions for W + multijet production at the LHC, JHEP 04 (2015) 012 [arXiv:1412.5157] [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    S. Kallweit, J.M. Lindert, P. Maierhöfer, S. Pozzorini and M. Schönherr, NLO QCD+EW predictions for V + jets including off-shell vector-boson decays and multijet merging, JHEP 04 (2016) 021 [arXiv:1511.08692] [INSPIRE].ADSGoogle Scholar
  64. [64]
    S. Kallweit, MUlti-chaNnel Integrator at Swiss (CH) precisionan automated parton level NLO generator, in preparation.Google Scholar
  65. [65]
    A. Denner, S. Dittmaier and L. Hofer, COLLIERa fortran-library for one-loop integrals, PoS(LL2014)071 (2014) [arXiv:1407.0087] [INSPIRE].
  66. [66]
    A. Denner, S. Dittmaier and L. Hofer, COLLIER: a fortran-based Complex One-Loop LIbrary in Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220 [arXiv:1604.06792] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  67. [67]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A. van Hameren, OneLOop: for the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  69. [69]
    F. Buccioni, J.M. Lindert, J.-N. Lang, P. Maierhöfer, S. Pozzorini, H. Zhang and M. Zoller, OpenLoops 2.0, in preparation.Google Scholar
  70. [70]
    F. Cascioli, P. Maierhöfer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    F. Buccioni, S. Pozzorini and M. Zoller, On-the-fly reduction of open loops, Eur. Phys. J. C 78 (2018) 70 [arXiv:1710.11452] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati, RECOLA: rEcursive Computation of One-Loop Amplitudes, Comput. Phys. Commun. 214 (2017) 140 [arXiv:1605.01090] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  73. [73]
    A. Denner, J.-N. Lang and S. Uccirati, Recola2: REcursive Computation of One-Loop Amplitudes 2, Comput. Phys. Commun. 224 (2018) 346 [arXiv:1711.07388] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    S. Catani and M.H. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].
  75. [75]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  76. [76]
    NNPDF collaboration, Parton distributions for the LHC run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  77. [77]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
  78. [78]
    Particle Data Group collaboration, Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  79. [79]
    ATLAS collaboration, Measurement of the ZZ production cross section in proton-proton collisions at \( \sqrt{s}=8 \) TeV using the ZZ + ′− ′+ and \( ZZ\to {\ell}^{-}{\ell}^{+}\nu \overline{\nu} \) channels with the ATLAS detector, JHEP 01 (2017) 099 [arXiv:1610.07585] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Massimiliano Grazzini
    • 1
  • Stefan Kallweit
    • 2
    • 3
    Email author
  • Marius Wiesemann
    • 2
  • Jeong Yeon Yook
    • 1
  1. 1.Physik-InstitutUniversität ZürichZürichSwitzerland
  2. 2.TH Division, Physics DepartmentCERNGeneva 23Switzerland
  3. 3.Università degli Studi di Milano-BicoccaMilanItaly

Personalised recommendations