Advertisement

Non-minimal flavour violation in A4 × SU(5) SUSY GUTs with smuon assisted dark matter

  • Jordan Bernigaud
  • Björn HerrmannEmail author
  • Stephen F. King
  • Samuel J. Rowley
Open Access
Regular Article - Theoretical Physics
  • 25 Downloads

Abstract

We study CP-conserving non-minimal flavour violation in A4 × SU(5) inspired Supersymmetric Grand Unified Theories (GUTs), focussing on the regions of parameter space where dark matter is successfully accommodated due to a light right-handed smuon a few GeV heavier than the lightest neutralino. In this region of parameter space we find that some of the flavour-violating parameters are constrained by the requirement of the dark matter relic density, due to the delicate interplay between the smuon and neutralino masses. By scanning over GUT scale flavour violating parameters, constrained by low-energy quark and lepton flavour violating observables, we find a striking difference in the results in which individual parameters are varied to those where multiple parameters are varied simultaneously, where the latter relaxes the constraints on flavour violating parameters due to cancellations and/or correlations. Since charged lepton-flavour violation provides the strongest constraints within a GUT framework, due to relations between quark and lepton flavour violation, we examine in detail a prominent correlation between some of the flavour violating parameters at the GUT scale consistent with the stringent lepton flavour violating process μ. We also examine the relation between GUT scale and low scale flavour violating parameters, for both quarks and leptons, and show how the usual expectations may be violated due to the correlations when multiple parameters are varied simultaneously.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Blanke, B. Fuks, I. Galon and G. Perez, Gluino Meets Flavored Naturalness, JHEP 04 (2016) 044 [arXiv:1512.03813] [INSPIRE].ADSGoogle Scholar
  2. [2]
    G. Brooijmans et al., Les Houches 2017: Physics at TeV Colliders New Physics Working Group Report, in Les Houches 2017: Physics at TeV Colliders New Physics Working Group Report [arXiv:1803.10379] [INSPIRE].
  3. [3]
    A. Chakraborty et al., Flavour-violating decays of mixed top-charm squarks at the LHC, Eur. Phys. J. C 78 (2018) 844 [arXiv:1808.07488] [INSPIRE].
  4. [4]
    M. Arana-Catania, S. Heinemeyer and M.J. Herrero, Updated Constraints on General Squark Flavor Mixing, Phys. Rev. D 90 (2014) 075003 [arXiv:1405.6960] [INSPIRE].
  5. [5]
    K. Kowalska, Phenomenology of SUSY with General Flavour Violation, JHEP 09 (2014) 139 [arXiv:1406.0710] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    K. De Causmaecker et al., General squark flavour mixing: constraints, phenomenology and benchmarks, JHEP 11 (2015) 125 [arXiv:1509.05414] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D.J.H. Chung, L.L. Everett, G.L. Kane, S.F. King, J.D. Lykken and L.-T. Wang, The Soft supersymmetry breaking Lagrangian: Theory and applications, Phys. Rept. 407 (2005) 1 [hep-ph/0312378] [INSPIRE].
  8. [8]
    A. Bartl, K. Hidaka, K. Hohenwarter-Sodek, T. Kernreiter, W. Majerotto and W. Porod, Test of lepton flavor violation at LHC, Eur. Phys. J. C 46 (2006) 783 [hep-ph/0510074] [INSPIRE].
  9. [9]
    G. Bozzi, B. Fuks, B. Herrmann and M. Klasen, Squark and gaugino hadroproduction and decays in non-minimal flavour violating supersymmetry, Nucl. Phys. B 787 (2007) 1 [arXiv:0704.1826] [INSPIRE].
  10. [10]
    A. Bartl, K. Hidaka, K. Hohenwarter-Sodek, T. Kernreiter, W. Majerotto and W. Porod, Impact of slepton generation mixing on the search for sneutrinos, Phys. Lett. B 660 (2008) 228 [arXiv:0709.1157] [INSPIRE].
  11. [11]
    F. del Aguila et al., Collider aspects of flavour physics at high Q, Eur. Phys. J. C 57 (2008) 183 [arXiv:0801.1800] [INSPIRE].
  12. [12]
    T. Hurth and W. Porod, Flavour violating squark and gluino decays, JHEP 08 (2009) 087 [arXiv:0904.4574] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Bartl, K. Hidaka, K. Hohenwarter-Sodek, T. Kernreiter, W. Majerotto and W. Porod, Impact of squark generation mixing on the search for gluinos at LHC, Phys. Lett. B 679 (2009) 260 [arXiv:0905.0132] [INSPIRE].
  14. [14]
    M. Bruhnke, B. Herrmann and W. Porod, Signatures of bosonic squark decays in non-minimally flavour-violating supersymmetry, JHEP 09 (2010) 006 [arXiv:1007.2100] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    A. Bartl, H. Eberl, B. Herrmann, K. Hidaka, W. Majerotto and W. Porod, Impact of squark generation mixing on the search for squarks decaying into fermions at LHC, Phys. Lett. B 698 (2011) 380 [Erratum ibid. B 700 (2011) 390] [arXiv:1007.5483] [INSPIRE].
  16. [16]
    A. Bartl et al., Flavour violating gluino three-body decays at LHC, Phys. Rev. D 84 (2011) 115026 [arXiv:1107.2775] [INSPIRE].
  17. [17]
    A. Bartl et al., Flavor violating bosonic squark decays at LHC, Int. J. Mod. Phys. A 29 (2014) 1450035 [arXiv:1212.4688] [INSPIRE].
  18. [18]
    A. Bartl, H. Eberl, E. Ginina, K. Hidaka and W. Majerotto, \( {h}^0\to c\overline{c} \) as a test case for quark flavor violation in the MSSM, Phys. Rev. D 91 (2015) 015007 [arXiv:1411.2840] [INSPIRE].
  19. [19]
    H. Eberl, E. Ginina, A. Bartl, K. Hidaka and W. Majerotto, The decays \( {h}^0\to b\overline{b} \) and \( {h}^0\to c\overline{c} \) in the light of the MSSM with quark flavour violation, JHEP 06 (2016) 143 [arXiv:1604.02366] [INSPIRE].
  20. [20]
    H. Eberl, E. Ginina and K. Hidaka, Two-body decays of gluino at full one-loop level in the quark-flavour violating MSSM, Eur. Phys. J. C 77 (2017) 189 [arXiv:1702.00348] [INSPIRE].
  21. [21]
    J. Bernigaud and B. Herrmann, First steps towards the reconstruction of the squark flavour structure, arXiv:1809.04370 [INSPIRE].
  22. [22]
    V. Barger, D. Marfatia, A. Mustafayev and A. Soleimani, SUSY dark matter and lepton flavor violation, Phys. Rev. D 80 (2009) 076004 [arXiv:0908.0941] [INSPIRE].
  23. [23]
    B. Herrmann, M. Klasen and Q. Le Boulc’h, Impact of squark flavour violation on neutralino dark matter, Phys. Rev. D 84 (2011) 095007 [arXiv:1106.6229] [INSPIRE].
  24. [24]
    D. Choudhury, R. Garani and S.K. Vempati, Flavored Co-annihilations, JHEP 06 (2012) 014 [arXiv:1104.4467] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P. Agrawal, M. Blanke and K. Gemmler, Flavored dark matter beyond Minimal Flavor Violation, JHEP 10 (2014) 072 [arXiv:1405.6709] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    F. Gabbiani and A. Masiero, FCNC in Generalized Supersymmetric Theories, Nucl. Phys. B 322 (1989) 235 [INSPIRE].
  27. [27]
    J.S. Hagelin, S. Kelley and T. Tanaka, Supersymmetric flavor changing neutral currents: Exact amplitudes and phenomenological analysis, Nucl. Phys. B 415 (1994) 293 [INSPIRE].
  28. [28]
    F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A Complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].
  29. [29]
    B. Dutta and Y. Mimura, Electron g − 2 with flavor violation in MSSM, Phys. Lett. B 790 (2019) 563 [arXiv:1811.10209] [INSPIRE].
  30. [30]
    S.F. King and M. Oliveira, Lepton flavor violation in string inspired models, Phys. Rev. D 60 (1999) 035003 [hep-ph/9804283] [INSPIRE].
  31. [31]
    G. Barenboim, K. Huitu and M. Raidal, Flavor violation in SUSY SU(5) GUT at large tan beta, Phys. Rev. D 63 (2001) 055006 [hep-ph/0005159] [INSPIRE].
  32. [32]
    S. Baek, T. Goto, Y. Okada and K.-i. Okumura, Muon anomalous magnetic moment, lepton flavor violation and flavor changing neutral current processes in SUSY GUT with right-handed neutrino, Phys. Rev. D 64 (2001) 095001 [hep-ph/0104146] [INSPIRE].
  33. [33]
    T. Blazek and S.F. King, Lepton flavor violation in the constrained MSSM with natural neutrino mass hierarchy, Nucl. Phys. B 662 (2003) 359 [hep-ph/0211368] [INSPIRE].
  34. [34]
    M. Ciuchini, A. Masiero, L. Silvestrini, S.K. Vempati and O. Vives, Grand unification of quark and lepton FCNCs, Phys. Rev. Lett. 92 (2004) 071801 [hep-ph/0307191] [INSPIRE].
  35. [35]
    J.G. Hayes, S.F. King and I.N.R. Peddie, Lepton flavor violation in realistic non-minimal supergravity models, Nucl. Phys. B 739 (2006) 106 [hep-ph/0509218] [INSPIRE].
  36. [36]
    L. Calibbi, A. Faccia, A. Masiero and S.K. Vempati, Lepton flavour violation from SUSY-GUTs: Where do we stand for MEG, PRISM/PRIME and a super flavour factory, Phys. Rev. D 74 (2006) 116002 [hep-ph/0605139] [INSPIRE].
  37. [37]
    S.G. Kim, N. Maekawa, A. Matsuzaki, K. Sakurai and T. Yoshikawa, Lepton flavor violation in SUSY GUT model with non-universal sfermion masses, Phys. Rev. D 75 (2007) 115008 [hep-ph/0612370] [INSPIRE].
  38. [38]
    K. Cheung, S.K. Kang, C.S. Kim and J. Lee, Correlation between lepton flavor violation and \( {B}_{\left(d,s\right)}-{\overline{B}}_{\left(d,s\right)} \) mixing in SUSY GUT, Phys. Lett. B 652 (2007) 319 [hep-ph/0702050] [INSPIRE].
  39. [39]
    M. Ciuchini, A. Masiero, P. Paradisi, L. Silvestrini, S.K. Vempati and O. Vives, Soft SUSY breaking grand unification: Leptons versus quarks on the flavor playground, Nucl. Phys. B 783 (2007) 112 [hep-ph/0702144] [INSPIRE].
  40. [40]
    S. Antusch, S.F. King and M. Malinsky, Solving the SUSY Flavour and CP Problems with SU(3) Family Symmetry, JHEP 06 (2008) 068 [arXiv:0708.1282] [INSPIRE].
  41. [41]
    C.H. Albright and M.-C. Chen, Lepton Flavor Violation in Predictive SUSY-GUT Models, Phys. Rev. D 77 (2008) 113010 [arXiv:0802.4228] [INSPIRE].
  42. [42]
    A. Masiero, P. Paradisi and R. Petronzio, Anatomy and Phenomenology of the Lepton Flavor Universality in SUSY Theories, JHEP 11 (2008) 042 [arXiv:0807.4721] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Albaid, Flavor Violation in a Minimal SO(10) × A 4 SUSY GUT, Int. J. Mod. Phys. A 27 (2012) 1250005 [arXiv:1106.4070] [INSPIRE].
  44. [44]
    T. Moroi, M. Nagai and T.T. Yanagida, Lepton Flavor Violations in High-Scale SUSY with Right-Handed Neutrinos, Phys. Lett. B 728 (2014) 342 [arXiv:1305.7357] [INSPIRE].
  45. [45]
    S. Fichet, B. Herrmann and Y. Stoll, A new flavour imprint of SU(5)-like grand unification and its LHC signatures, Phys. Lett. B 742 (2015) 69 [arXiv:1403.3397] [INSPIRE].
  46. [46]
    S. Fichet, B. Herrmann and Y. Stoll, Tasting the SU(5) nature of supersymmetry at the LHC, JHEP 05 (2015) 091 [arXiv:1501.05307] [INSPIRE].
  47. [47]
    A.S. Belyaev, S.F. King and P.B. Schaefers, Muon g-2 and dark matter suggest nonuniversal gaugino masses: SU(5) × A 4 case study at the LHC, Phys. Rev. D 97 (2018) 115002 [arXiv:1801.00514] [INSPIRE].
  48. [48]
    S. Antusch, S.F. King and M. Spinrath, Spontaneous CP-violation in A 4 × SU(5) with Constrained Sequential Dominance 2, Phys. Rev. D 87 (2013) 096018 [arXiv:1301.6764] [INSPIRE].
  49. [49]
    M. Dimou, S.F. King and C. Luhn, Approaching Minimal Flavour Violation from an SU(5) × S 4 × U(1) SUSY GUT, JHEP 02 (2016) 118 [arXiv:1511.07886] [INSPIRE].
  50. [50]
    M. Dimou, S.F. King and C. Luhn, Phenomenological implications of an SU(5) × S 4 × U(1) SUSY GUT of flavor, Phys. Rev. D 93 (2016) 075026 [arXiv:1512.09063] [INSPIRE].
  51. [51]
    S.P. Martin, A Supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 21 (2010) 1 [hep-ph/9709356] [INSPIRE].
  52. [52]
    B.D. Callen and R.R. Volkas, Large lepton mixing angles from a 4 + 1-dimensional SU(5) × A 4 domain-wall braneworld model, Phys. Rev. D 86 (2012) 056007 [arXiv:1205.3617] [INSPIRE].
  53. [53]
    I.K. Cooper, S.F. King and C. Luhn, A 4 × SU(5) SUSY GUT of Flavour with Trimaximal Neutrino Mixing, JHEP 06 (2012) 130 [arXiv:1203.1324] [INSPIRE].
  54. [54]
    I.K. Cooper, S.F. King and C. Luhn, SUSY SU(5) with singlet plus adjoint matter and A 4 family symmetry, Phys. Lett. B 690 (2010) 396 [arXiv:1004.3243] [INSPIRE].
  55. [55]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete A 4 × SU(5) SUSY GUT, JHEP 06 (2015) 141 [arXiv:1503.03306] [INSPIRE].
  56. [56]
    Particle Data Group collaboration, Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  57. [57]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  58. [58]
    ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].
  59. [59]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].
  60. [60]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  61. [61]
    HFLAV collaboration, Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
  62. [62]
    J. Brod and M. Gorbahn, Next-to-Next-to-Leading-Order Charm-Quark Contribution to the CP-violation Parameter ϵ K and ΔM K , Phys. Rev. Lett. 108 (2012) 121801 [arXiv:1108.2036] [INSPIRE].
  63. [63]
    L. Di Luzio, M. Kirk and A. Lenz, Updated B s -mixing constraints on new physics models for bsℓ + anomalies, Phys. Rev. D 97 (2018) 095035 [arXiv:1712.06572] [INSPIRE].
  64. [64]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].
  65. [65]
    W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].
  66. [66]
    F. Staub, From Superpotential to Model Files for FeynArts and CalcHep/CompHEP, Comput. Phys. Commun. 181 (2010) 1077 [arXiv:0909.2863] [INSPIRE].
  67. [67]
    F. Staub, Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies, Comput. Phys. Commun. 182 (2011) 808 [arXiv:1002.0840] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  68. [68]
    F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  69. [69]
    W. Porod, F. Staub and A. Vicente, A Flavor Kit for BSM models, Eur. Phys. J. C 74 (2014) 2992 [arXiv:1405.1434] [INSPIRE].
  70. [70]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: A Program for calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103 [hep-ph/0112278] [INSPIRE].
  71. [71]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: Version 1.3, Comput. Phys. Commun. 174 (2006) 577 [hep-ph/0405253] [INSPIRE].
  72. [72]
    D. Barducci et al., Collider limits on new physics within MicrOMEGAs 4.3, Comput. Phys. Commun. 222 (2018) 327 [arXiv:1606.03834] [INSPIRE].
  73. [73]
    B.C. Allanach et al., SUSY Les Houches Accord 2, Comput. Phys. Commun. 180 (2009) 8 [arXiv:0801.0045] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    J. D. Hunter, Matplotlib: A 2D graphics environment, Comput. Sci. Engin. 9 (2007) 3  https://doi.org/10.1109/MCSE.2007.55.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Jordan Bernigaud
    • 1
  • Björn Herrmann
    • 1
    Email author
  • Stephen F. King
    • 2
  • Samuel J. Rowley
    • 2
  1. 1.Univ. Grenoble Alpes, USMB, CNRS, LAPThAnnecyFrance
  2. 2.School of Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.

Personalised recommendations