Scaling limits of dS vacua and the swampland

  • Andreas Banlaki
  • Abhishek Chowdhury
  • Christoph RoupecEmail author
  • Timm Wrase
Open Access
Regular Article - Theoretical Physics


We discuss the properties of massive type IIA flux compactifications. In particular, we investigate in which case one can obtain dS vacua at large volume and small coupling. We support a general discussion of scaling symmetries with the analysis of a concrete example. We find that the large volume and weak coupling limit requires a large number of O6-planes. Since these are bound for any given compactification space one cannot get arbitrarily good control over α′ and string loop corrections.


Flux compactifications Superstring Vacua 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].
  2. [2]
    P. Agrawal, G. Obied, P.J. Steinhardt and C. Vafa, On the Cosmological Implications of the String Swampland, Phys. Lett. B 784 (2018) 271 [arXiv:1806.09718] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D. Andriot, On the de Sitter swampland criterion, Phys. Lett. B 785 (2018) 570 [arXiv:1806.10999] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    G. Dvali and C. Gomez, On Exclusion of Positive Cosmological Constant, Fortsch. Phys. 67 (2019) 1800092 [arXiv:1806.10877] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    A. Achúcarro and G.A. Palma, The string swampland constraints require multi-field inflation, JCAP 02 (2019) 041 [arXiv:1807.04390] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.K. Garg and C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland, arXiv:1807.05193 [INSPIRE].
  7. [7]
    J.-L. Lehners, Small-Field and Scale-Free: Inflation and Ekpyrosis at their Extremes, JCAP 11 (2018) 001 [arXiv:1807.05240] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Kehagias and A. Riotto, A note on Inflation and the Swampland, Fortsch. Phys. 66 (2018) 1800052 [arXiv:1807.05445] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  9. [9]
    M. Dias, J. Frazer, A. Retolaza and A. Westphal, Primordial Gravitational Waves and the Swampland, Fortsch. Phys. 67 (2019) 1800063 [arXiv:1807.06579] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    F. Denef, A. Hebecker and T. Wrase, de Sitter swampland conjecture and the Higgs potential, Phys. Rev. D 98 (2018) 086004 [arXiv:1807.06581] [INSPIRE].
  11. [11]
    E. Ó. Colgáin, M.H.P.M. Van Putten and H. Yavartanoo, Observational consequences of H 0 tension in de Sitter Swampland, arXiv:1807.07451 [INSPIRE].
  12. [12]
    S. Paban and R. Rosati, Inflation in Multi-field Modified DBM Potentials, JCAP 09 (2018) 042 [arXiv:1807.07654] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    C. Roupec and T. Wrase, de Sitter Extrema and the Swampland, Fortsch. Phys. 67 (2019) 1800082 [arXiv:1807.09538] [INSPIRE].
  14. [14]
    D. Andriot, New constraints on classical de Sitter: flirting with the swampland, Fortsch. Phys. 67 (2019) 1800103 [arXiv:1807.09698] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    H. Matsui and F. Takahashi, Eternal Inflation and Swampland Conjectures, Phys. Rev. D 99 (2019) 023533 [arXiv:1807.11938] [INSPIRE].ADSGoogle Scholar
  16. [16]
    I. Ben-Dayan, Draining the Swampland, arXiv:1808.01615 [INSPIRE].
  17. [17]
    L. Heisenberg, M. Bartelmann, R. Brandenberger and A. Refregier, Dark Energy in the Swampland, Phys. Rev. D 98 (2018) 123502 [arXiv:1808.02877] [INSPIRE].ADSGoogle Scholar
  18. [18]
    C. Damian and O. Loaiza-Brito, Two-Field Axion Inflation and the Swampland Constraint in the Flux-Scaling Scenario, Fortsch. Phys. 67 (2019) 1800072 [arXiv:1808.03397] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    J.P. Conlon, The de Sitter swampland conjecture and supersymmetric AdS vacua, Int. J. Mod. Phys. A 33 (2018) 1850178 [arXiv:1808.05040] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    W.H. Kinney, S. Vagnozzi and L. Visinelli, The Zoo Plot Meets the Swampland: Mutual (In)Consistency of Single-Field Inflation, String Conjectures and Cosmological Data, arXiv:1808.06424 [INSPIRE].
  21. [21]
    K. Dasgupta, M. Emelin, E. McDonough and R. Tatar, Quantum Corrections and the de Sitter Swampland Conjecture, JHEP 01 (2019) 145 [arXiv:1808.07498] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    M. Cicoli, S. De Alwis, A. Maharana, F. Muia and F. Quevedo, de Sitter vs Quintessence in String Theory, Fortsch. Phys. 67 (2019) 1800079 [arXiv:1808.08967] [INSPIRE].
  23. [23]
    S. Kachru and S.P. Trivedi, A comment on effective field theories of flux vacua, Fortsch. Phys. 67 (2019) 1800086 [arXiv:1808.08971] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    Y. Akrami, R. Kallosh, A. Linde and V. Vardanyan, The Landscape, the Swampland and the Era of Precision Cosmology, Fortsch. Phys. 67 (2019) 1800075 [arXiv:1808.09440] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    H. Murayama, M. Yamazaki and T.T. Yanagida, Do We Live in the Swampland?, JHEP 12 (2018) 032 [arXiv:1809.00478] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    M.C. David Marsh, The Swampland, Quintessence and the Vacuum Energy, Phys. Lett. B 789 (2019) 639 [arXiv:1809.00726] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Brahma and M. Wali Hossain, Avoiding the string swampland in single-field inflation: Excited initial states, JHEP 03 (2019) 006 [arXiv:1809.01277] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    K. Choi, D. Chway and C.S. Shin, The dS swampland conjecture with the electroweak symmetry and QCD chiral symmetry breaking, JHEP 11 (2018) 142 [arXiv:1809.01475] [INSPIRE].ADSGoogle Scholar
  29. [29]
    U. Danielsson, The quantum swampland, arXiv:1809.04512 [INSPIRE].
  30. [30]
    G. D’Amico, N. Kaloper and A. Lawrence, Strongly Coupled Quintessence, arXiv:1809.05109 [INSPIRE].
  31. [31]
    C. Han, S. Pi and M. Sasaki, Quintessence Saves Higgs Instability, arXiv:1809.05507 [INSPIRE].
  32. [32]
    J. Moritz, A. Retolaza and A. Westphal, On uplifts by warped anti-D3-branes, Fortsch. Phys. 67 (2019) 1800098 [arXiv:1809.06618] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    J. Halverson and F. Ruehle, Computational Complexity of Vacua and Near-Vacua in Field and String Theory, Phys. Rev. D 99 (2019) 046015 [arXiv:1809.08279] [INSPIRE].Google Scholar
  34. [34]
    J. Ellis, B. Nagaraj, D.V. Nanopoulos and K.A. Olive, de Sitter Vacua in No-Scale Supergravity, JHEP 11 (2018) 110 [arXiv:1809.10114] [INSPIRE].
  35. [35]
    L. Anguelova, E.M. Babalic and C.I. Lazaroiu, Two-field Cosmological α-attractors with Noether Symmetry, arXiv:1809.10563 [INSPIRE].
  36. [36]
    C.-M. Lin, K.-W. Ng and K. Cheung, Chaotic inflation on the brane and the Swampland Criteria, arXiv:1810.01644 [INSPIRE].
  37. [37]
    K. Hamaguchi, M. Ibe and T. Moroi, The swampland conjecture and the Higgs expectation value, JHEP 12 (2018) 023 [arXiv:1810.02095] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Ashoorioon, Rescuing Single Field Inflation from the Swampland, Phys. Lett. B 790 (2019) 568 [arXiv:1810.04001] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter Conjectures on the Swampland, Phys. Lett. B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    S.-J. Wang, Electroweak relaxation of cosmological hierarchy, Phys. Rev. D 99 (2019) 023529 [arXiv:1810.06445] [INSPIRE].ADSGoogle Scholar
  41. [41]
    H. Fukuda, R. Saito, S. Shirai and M. Yamazaki, Phenomenological Consequences of the Refined Swampland Conjecture, arXiv:1810.06532 [INSPIRE].
  42. [42]
    A. Hebecker and T. Wrase, The Asymptotic dS Swampland ConjectureA Simplified Derivation and a Potential Loophole, Fortsch. Phys. 67 (2019) 1800097 [arXiv:1810.08182] [INSPIRE].CrossRefGoogle Scholar
  43. [43]
    F.F. Gautason, V. Van Hemelryck and T. Van Riet, The Tension between 10D Supergravity and dS Uplifts, Fortsch. Phys. 67 (2019) 1800091 [arXiv:1810.08518] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    Y. Olguin-Trejo, S.L. Parameswaran, G. Tasinato and I. Zavala, Runaway Quintessence, Out of the Swampland, JCAP 01 (2019) 031 [arXiv:1810.08634] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S.K. Garg, C. Krishnan and M. Zaid, Bounds on Slow Roll at the Boundary of the Landscape, arXiv:1810.09406 [INSPIRE].
  46. [46]
    G. Dvali, C. Gomez and S. Zell, Quantum Breaking Bound on de Sitter and Swampland, Fortsch. Phys. 67 (2019) 1800094 [arXiv:1810.11002] [INSPIRE].CrossRefGoogle Scholar
  47. [47]
    S.C. Park, Minimal gauge inflation and the refined Swampland conjecture, JCAP 01 (2019) 053 [arXiv:1810.11279] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    P. Agrawal and G. Obied, Dark Energy and the Refined de Sitter Conjecture, arXiv:1811.00554 [INSPIRE].
  49. [49]
    J.J. Heckman, C. Lawrie, L. Lin and G. Zoccarato, F-theory and Dark Energy, arXiv:1811.01959 [INSPIRE].
  50. [50]
    Z. Yi and Y. Gong, Gauss-Bonnet inflation and swampland, arXiv:1811.01625 [INSPIRE].
  51. [51]
    C.-I. Chiang, J.M. Leedom and H. Murayama, What does Inflation say about Dark Energy given the Swampland Conjectures?, arXiv:1811.01987 [INSPIRE].
  52. [52]
    D.Y. Cheong, S.M. Lee and S.C. Park, Higgs Inflation and the Refined dS Conjecture, Phys. Lett. B 789 (2019) 336 [arXiv:1811.03622] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M. Ibe, M. Yamazaki and T.T. Yanagida, Quintessence Axion from Swampland Conjectures, arXiv:1811.04664 [INSPIRE].
  54. [54]
    J.J. Blanco-Pillado, M.A. Urkiola and J.M. Wachter, Racetrack Potentials and the de Sitter Swampland Conjectures, JHEP 01 (2019) 187 [arXiv:1811.05463] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  55. [55]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
  56. [56]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    U.H. Danielsson and T. Van Riet, What if string theory has no de Sitter vacua?, Int. J. Mod. Phys. D 27 (2018) 1830007 [arXiv:1804.01120] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    T. Van Riet, On classical de Sitter solutions in higher dimensions, Class. Quant. Grav. 29 (2012) 055001 [arXiv:1111.3154] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    J. Moritz, A. Retolaza and A. Westphal, Toward de Sitter space from ten dimensions, Phys. Rev. D 97 (2018) 046010 [arXiv:1707.08678] [INSPIRE].ADSMathSciNetGoogle Scholar
  60. [60]
    S. Sethi, Supersymmetry Breaking by Fluxes, JHEP 10 (2018) 022 [arXiv:1709.03554] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    R. Kallosh, A. Linde, E. McDonough and M. Scalisi, de Sitter Vacua with a Nilpotent Superfield, Fortsch. Phys. 67 (2019) 1800068 [arXiv:1808.09428] [INSPIRE].
  62. [62]
    R. Kallosh, A. Linde, E. McDonough and M. Scalisi, 4D models of de Sitter uplift, Phys. Rev. D 99 (2019) 046006 [arXiv:1809.09018] [INSPIRE].Google Scholar
  63. [63]
    I. Bena, M. Graña and N. Halmagyi, On the Existence of Meta-stable Vacua in Klebanov-Strassler, JHEP 09 (2010) 087 [arXiv:0912.3519] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    T. Wrase and M. Zagermann, On Classical de Sitter Vacua in String Theory, Fortsch. Phys. 58 (2010) 906 [arXiv:1003.0029] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary Constraints on Type IIA String Theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    D. Andriot and J. Blåbäck, Refining the boundaries of the classical de Sitter landscape, JHEP 03 (2017) 102 [Erratum ibid. 03 (2018) 083] [arXiv:1609.00385] [INSPIRE].
  68. [68]
    D. Andriot, On classical de Sitter and Minkowski solutions with intersecting branes, JHEP 03 (2018) 054 [arXiv:1710.08886] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    C. Caviezel, P. Koerber, S. Körs, D. Lüst, T. Wrase and M. Zagermann, On the Cosmology of Type IIA Compactifications on SU(3)-structure Manifolds, JHEP 04 (2009) 010 [arXiv:0812.3551] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    R. Flauger, S. Paban, D. Robbins and T. Wrase, Searching for slow-roll moduli inflation in massive type IIA supergravity with metric fluxes, Phys. Rev. D 79 (2009) 086011 [arXiv:0812.3886] [INSPIRE].ADSGoogle Scholar
  71. [71]
    U.H. Danielsson, S.S. Haque, G. Shiu and T. Van Riet, Towards Classical de Sitter Solutions in String Theory, JHEP 09 (2009) 114 [arXiv:0907.2041] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    C. Caviezel, T. Wrase and M. Zagermann, Moduli Stabilization and Cosmology of Type IIB on SU(2)-Structure Orientifolds, JHEP 04 (2010) 011 [arXiv:0912.3287] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    U.H. Danielsson, P. Koerber and T. Van Riet, Universal de Sitter solutions at tree-level, JHEP 05 (2010) 090 [arXiv:1003.3590] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    D. Andriot, E. Goi, R. Minasian and M. Petrini, Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory, JHEP 05 (2011) 028 [arXiv:1003.3774] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    M. Petrini, G. Solard and T. Van Riet, AdS vacua with scale separation from IIB supergravity, JHEP 11 (2013) 010 [arXiv:1308.1265] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  76. [76]
    G. Shiu and Y. Sumitomo, Stability Constraints on Classical de Sitter Vacua, JHEP 09 (2011) 052 [arXiv:1107.2925] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. [77]
    U.H. Danielsson, G. Shiu, T. Van Riet and T. Wrase, A note on obstinate tachyons in classical dS solutions, JHEP 03 (2013) 138 [arXiv:1212.5178] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    D. Junghans, Tachyons in Classical de Sitter Vacua, JHEP 06 (2016) 132 [arXiv:1603.08939] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. [79]
    D. Junghans and M. Zagermann, A Universal Tachyon in Nearly No-scale de Sitter Compactifications, JHEP 07 (2018) 078 [arXiv:1612.06847] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  80. [80]
    R. Kallosh and T. Wrase, dS Supergravity from 10d, Fortsch. Phys. 67 (2019) 1800071 [arXiv:1808.09427] [INSPIRE].CrossRefGoogle Scholar
  81. [81]
    J. Blåbäck, U. Danielsson and G. Dibitetto, A new light on the darkest corner of the landscape, arXiv:1810.11365 [INSPIRE].
  82. [82]
    D. Junghans, Weakly Coupled de Sitter Vacua with Fluxes and the Swampland, arXiv:1811.06990 [INSPIRE].
  83. [83]
    O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP 07 (2005) 066 [hep-th/0505160] [INSPIRE].ADSMathSciNetGoogle Scholar
  84. [84]
    P.G.O. Freund and M.A. Rubin, Dynamics of Dimensional Reduction, Phys. Lett. B 97 (1980) 233 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  85. [85]
    F.F. Gautason, M. Schillo, T. Van Riet and M. Williams, Remarks on scale separation in flux vacua, JHEP 03 (2016) 061 [arXiv:1512.00457] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  86. [86]
    O. Aharony, Y.E. Antebi and M. Berkooz, On the Conformal Field Theory Duals of type IIA AdS 4 Flux Compactifications, JHEP 02 (2008) 093 [arXiv:0801.3326] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    S.S. Haque, G. Shiu, B. Underwood and T. Van Riet, Minimal simple de Sitter solutions, Phys. Rev. D 79 (2009) 086005 [arXiv:0810.5328] [INSPIRE].ADSMathSciNetGoogle Scholar
  88. [88]
    A. Herraez, L.E. Ibáñez, F. Marchesano and G. Zoccarato, The Type IIA Flux Potential, 4-forms and Freed-Witten anomalies, JHEP 09 (2018) 018 [arXiv:1802.05771] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  89. [89]
    U.H. Danielsson, S.S. Haque, P. Koerber, G. Shiu, T. Van Riet and T. Wrase, de Sitter hunting in a classical landscape, Fortsch. Phys. 59 (2011) 897 [arXiv:1103.4858] [INSPIRE].
  90. [90]
    E. Silverstein, Simple de Sitter Solutions, Phys. Rev. D 77 (2008) 106006 [arXiv:0712.1196] [INSPIRE].ADSMathSciNetGoogle Scholar
  91. [91]
    B. de Carlos, A. Guarino and J.M. Moreno, Flux moduli stabilisation, Supergravity algebras and no-go theorems, JHEP 01 (2010) 012 [arXiv:0907.5580] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  92. [92]
    B. de Carlos, A. Guarino and J.M. Moreno, Complete classification of Minkowski vacua in generalised flux models, JHEP 02 (2010) 076 [arXiv:0911.2876] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  93. [93]
    U. Danielsson and G. Dibitetto, On the distribution of stable de Sitter vacua, JHEP 03 (2013) 018 [arXiv:1212.4984] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    J. Blåbäck, U. Danielsson and G. Dibitetto, Fully stable dS vacua from generalised fluxes, JHEP 08 (2013) 054 [arXiv:1301.7073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  95. [95]
    C. Damian, L.R. Diaz-Barron, O. Loaiza-Brito and M. Sabido, Slow-Roll Inflation in Non-geometric Flux Compactification, JHEP 06 (2013) 109 [arXiv:1302.0529] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  96. [96]
    J. Blåbäck, U.H. Danielsson, G. Dibitetto and S.C. Vargas, Universal dS vacua in STU-models, JHEP 10 (2015) 069 [arXiv:1505.04283] [INSPIRE].
  97. [97]
    G. Villadoro and F. Zwirner, N = 1 effective potential from dual type-IIA D6/O6 orientifolds with general fluxes, JHEP 06 (2005) 047 [hep-th/0503169] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  98. [98]
    P.G. Camara, A. Font and L.E. Ibáñez, Fluxes, moduli fixing and MSSM-like vacua in a simple IIA orientifold, JHEP 09 (2005) 013 [hep-th/0506066] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  99. [99]
    G. Aldazabal and A. Font, A Second look at N = 1 supersymmetric AdS 4 vacua of type IIA supergravity, JHEP 02 (2008) 086 [arXiv:0712.1021] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    J. Blåbäck, U. Danielsson and G. Dibitetto, Accelerated Universes from type IIA Compactifications, JCAP 03 (2014) 003 [arXiv:1310.8300] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    S. Ferrara, R. Kallosh and A. Linde, Cosmology with Nilpotent Superfields, JHEP 10 (2014) 143 [arXiv:1408.4096] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  102. [102]
    R. Kallosh and T. Wrase, Emergence of Spontaneously Broken Supersymmetry on an Anti-D3-Brane in KKLT dS Vacua, JHEP 12 (2014) 117 [arXiv:1411.1121] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    E.A. Bergshoeff, K. Dasgupta, R. Kallosh, A. Van Proeyen and T. Wrase, \( \overline{\mathrm{D}3} \) and dS, JHEP 05 (2015) 058 [arXiv:1502.07627] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  104. [104]
    M. Dine and N. Seiberg, Is the Superstring Weakly Coupled?, Phys. Lett. 162B (1985) 299 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsTU WienViennaAustria

Personalised recommendations