Advertisement

Connecting holographic Wess-Zumino consistency condition to the holographic anomaly

  • Vasudev Shyam
Open Access
Regular Article - Theoretical Physics
  • 41 Downloads

Abstract

The Holographic Wess-Zumino (HWZ) consistency condition is shown through a step by step mapping of renormalization group flows to Hamiltonian systems, to lead to the Holographic anomaly. This condition codifies how the energy scale, when treated as the emergent bulk direction in Holographic theories, is put on equal footing as the other directions of the space the field theory inhabits. So, this is a defining feature of theories possessing local Holographic bulk duals. In four dimensional Holographic conformal field theories, the a and c anomaly coefficients are equated, and this is seen as a defining property of theories which possess General Relativity coupled to matter as a dual. Hence, showing how the former consistency condition leads to the latter relation between anomaly coefficients adds evidence to the claim that the HWZ condition is a defining feature of theories possessing local gravity duals.

Keywords

AdS-CFT Correspondence Renormalization Group Classical Theories of Gravity Space-Time Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, Gen. Rel. Grav. 40 (2008) 1997 [gr-qc/0405109] [INSPIRE].
  2. [2]
    S. Deser and J. Franklin, Canonical Analysis and Stability of Lanczos-Lovelock Gravity, Class. Quant. Grav. 29 (2012) 072001 [arXiv:1110.6085] [INSPIRE].
  3. [3]
    C. Teitelboim and J. Zanelli, Dimensionally continued topological gravitation theory in Hamiltonian form, Class. Quant. Grav. 4 (1987) L125 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    J.T. Liu and W.A. Sabra, Hamilton-Jacobi Counterterms for Einstein-Gauss-Bonnet Gravity, Class. Quant. Grav. 27 (2010) 175014 [arXiv:0807.1256] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S. Ruz, R. Mandal, S. Debnath and A.K. Sanyal, Resolving the issue of branched Hamiltonian in modified Lanczos-Lovelock gravity, Gen. Rel. Grav. 48 (2016) 86 [arXiv:1409.7197] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    M. Fukuma, S. Matsuura and T. Sakai, Higher derivative gravity and the AdS/CFT correspondence, Prog. Theor. Phys. 105 (2001) 1017 [hep-th/0103187] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    C. Teitelboim, How commutators of constraints reflect the space-time structure, Annals Phys. 79 (1973) 542 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    S.A. Hojman, K. Kuchar and C. Teitelboim, Geometrodynamics Regained, Annals Phys. 96 (1976) 88 [INSPIRE].
  10. [10]
    S.-S. Lee, Background independent holographic description: From matrix field theory to quantum gravity, JHEP 10 (2012) 160 [arXiv:1204.1780] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    S.-S. Lee, Quantum Renormalization Group and Holography, JHEP 01 (2014) 076 [arXiv:1305.3908] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, Diffeomorphisms and holographic anomalies, Class. Quant. Grav. 17 (2000) 1129 [hep-th/9910267] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    E.T. Akhmedov, Notes on multitrace operators and holographic renormalization group, in Workshop on Integrable Models, Strings and Quantum Gravity Chennai, India, January 15-19, 2002, 2002, hep-th/0202055 [INSPIRE].
  14. [14]
    C. Becchi, S. Giusto and C. Imbimbo, The Wilson-Polchinski renormalization group equation in the planar limit, Nucl. Phys. B 633 (2002) 250 [hep-th/0202155] [INSPIRE].
  15. [15]
    J. Erdmenger, A field theoretical interpretation of the holographic renormalization group, Phys. Rev. D 64 (2001) 085012 [hep-th/0103219] [INSPIRE].
  16. [16]
    H. Osborn, Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories, Nucl. Phys. B 363 (1991) 486 [INSPIRE].
  17. [17]
    S. Corley, A note on holographic Ward identities, Phys. Lett. B 484 (2000) 141 [hep-th/0004030] [INSPIRE].
  18. [18]
    V. Shyam, General Covariance from the Quantum Renormalization Group, Phys. Rev. D 95 (2017) 066003 [arXiv:1611.05315] [INSPIRE].
  19. [19]
    B.P. Dolan, Symplectic geometry and Hamiltonian flow of the renormalization group equation, Int. J. Mod. Phys. A 10 (1995) 2703 [hep-th/9406061] [INSPIRE].
  20. [20]
    Y. Nakayama, ac test of holography versus quantum renormalization group, Mod. Phys. Lett. A 29 (2014) 1450158 [arXiv:1401.5257] [INSPIRE].
  21. [21]
    I. Papadimitriou, Holographic renormalization as a canonical transformation, JHEP 11 (2010) 014 [arXiv:1007.4592] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    I. Papadimitriou Lectures on Holographic Renormalization, in Theoretical Frontiers in Black Holes and Cosmology, Springer Proc. Phys. 176 (2016) 131.Google Scholar
  23. [23]
    I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, IRMA Lect. Math. Theor. Phys. 8 (2005) 73 [hep-th/0404176] [INSPIRE].
  24. [24]
    J.M. Lizana and M. Pérez-Victoria, Wilsonian renormalisation of CFT correlation functions: Field theory, JHEP 06 (2017) 139 [arXiv:1702.07773] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    K. Kuchar, Geometrodynamics regained: a lagrangian approach, J. Math. Phys. 15 (1974) 708 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations