Advertisement

Tensor network formulation for two-dimensional lattice \( \mathcal{N} \) = 1 Wess-Zumino model

  • Daisuke Kadoh
  • Yoshinobu Kuramashi
  • Yoshifumi Nakamura
  • Ryo Sakai
  • Shinji Takeda
  • Yusuke Yoshimura
Open Access
Regular Article - Theoretical Physics

Abstract

Supersymmetric models with spontaneous supersymmetry breaking suffer from the notorious sign problem in stochastic approaches. By contrast, the tensor network approaches do not have such a problem since they are based on deterministic procedures. In this work, we present a tensor network formulation of the two-dimensional lattice \( \mathcal{N} \) = 1 Wess-Zumino model while showing that numerical results agree with the exact solutions for the free case.

Keywords

Field Theories in Lower Dimensions Lattice Quantum Field Theory Supersymmetry Breaking 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
  2. [2]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  4. [4]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    E. Witten, Constraints on Supersymmetry Breaking, Nucl. Phys. B 202 (1982) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    J. Wess and B. Zumino, Supergauge Transformations in Four-Dimensions, Nucl. Phys. B 70 (1974) 39 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    J. Bartels and J.B. Bronzan, Supersymmetry on a lattice, Phys. Rev. D 28 (1983) 818 [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    F. Synatschke, H. Gies and A. Wipf, Phase Diagram and Fixed-Point Structure of two dimensional N = 1 Wess-Zumino Models, Phys. Rev. D 80 (2009) 085007 [arXiv:0907.4229] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S. Cecotti and L. Girardello, Stochastic Processes in Lattice (Extended) Supersymmetry, Nucl. Phys. B 226 (1983) 417 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  10. [10]
    N. Sakai and M. Sakamoto, Lattice Supersymmetry and the Nicolai Mapping, Nucl. Phys. B 229 (1983) 173 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    Y. Kikukawa and Y. Nakayama, Nicolai mapping versus exact chiral symmetry on the lattice, Phys. Rev. D 66 (2002) 094508 [hep-lat/0207013] [INSPIRE].
  12. [12]
    J. Giedt and E. Poppitz, Lattice supersymmetry, superfields and renormalization, JHEP 09 (2004) 029 [hep-th/0407135] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    D. Kadoh and H. Suzuki, Supersymmetry restoration in lattice formulations of 2D \( \mathcal{N} \) = (2,2) WZ model based on the Nicolai map, Phys. Lett. B 696 (2011) 163 [arXiv:1011.0788] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    P.H. Dondi and H. Nicolai, Lattice Supersymmetry, Nuovo Cim. A 41 (1977) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    D. Kadoh and H. Suzuki, Supersymmetric nonperturbative formulation of the WZ model in lower dimensions, Phys. Lett. B 684 (2010) 167 [arXiv:0909.3686] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    K. Asaka, A. D’Adda, N. Kawamoto and Y. Kondo, Exact lattice supersymmetry at the quantum level for N = 2 Wess-Zumino models in 1- and 2-dimensions, Int. J. Mod. Phys. A 31 (2016) 1650125 [arXiv:1607.04371] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  17. [17]
    A. D’Adda, N. Kawamoto and J. Saito, An Alternative Lattice Field Theory Formulation Inspired by Lattice Supersymmetry, JHEP 12 (2017) 089 [arXiv:1706.02615] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    M.F.L. Golterman and D.N. Petcher, A Local Interactive Lattice Model With Supersymmetry, Nucl. Phys. B 319 (1989) 307 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Beccaria, G. Curci and E. D’Ambrosio, Simulation of supersymmetric models with a local Nicolai map, Phys. Rev. D 58 (1998) 065009 [hep-lat/9804010] [INSPIRE].
  20. [20]
    S. Catterall and S. Karamov, Exact lattice supersymmetry: The Two-dimensional N = 2 Wess-Zumino model, Phys. Rev. D 65 (2002) 094501 [hep-lat/0108024] [INSPIRE].
  21. [21]
    M. Beccaria, M. Campostrini and A. Feo, Supersymmetry breaking in two-dimensions: The Lattice N = 1 Wess-Zumino model, Phys. Rev. D 69 (2004) 095010 [hep-lat/0402007] [INSPIRE].
  22. [22]
    J. Giedt, R-symmetry in the Q-exact (2,2) 2 − D lattice Wess-Zumino model, Nucl. Phys. B 726 (2005) 210 [hep-lat/0507016] [INSPIRE].
  23. [23]
    G. Bergner, T. Kaestner, S. Uhlmann and A. Wipf, Low-dimensional Supersymmetric Lattice Models, Annals Phys. 323 (2008) 946 [arXiv:0705.2212] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    T. Kastner, G. Bergner, S. Uhlmann, A. Wipf and C. Wozar, Two-Dimensional Wess-Zumino Models at Intermediate Couplings, Phys. Rev. D 78 (2008) 095001 [arXiv:0807.1905] [INSPIRE].ADSGoogle Scholar
  25. [25]
    H. Kawai and Y. Kikukawa, A Lattice study of N = 2 Landau-Ginzburg model using a Nicolai map, Phys. Rev. D 83 (2011) 074502 [arXiv:1005.4671] [INSPIRE].ADSGoogle Scholar
  26. [26]
    C. Wozar and A. Wipf, Supersymmetry Breaking in Low Dimensional Models, Annals Phys. 327 (2012) 774 [arXiv:1107.3324] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  27. [27]
    K. Steinhauer and U. Wenger, Spontaneous supersymmetry breaking in the 2D \( \mathcal{N} \) = 1 Wess-Zumino model, Phys. Rev. Lett. 113 (2014) 231601 [arXiv:1410.6665] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Levin and C.P. Nave, Tensor renormalization group approach to 2D classical lattice models, Phys. Rev. Lett. 99 (2007) 120601 [cond-mat/0611687] [INSPIRE].
  29. [29]
    Z.-C. Gu, F. Verstraete and X.-G. Wen, Grassmann tensor network states and its renormalization for strongly correlated fermionic and bosonic states, arXiv:1004.2563 [INSPIRE].
  30. [30]
    Z.-C. Gu, Efficient simulation of Grassmann tensor product states, Phys. Rev. B 88 (2013) 115139 [arXiv:1109.4470].ADSCrossRefGoogle Scholar
  31. [31]
    Y. Shimizu, Analysis of the (1 + 1)-dimensional lattice ϕ 4 model using the tensor renormalization group, Chin. J. Phys. 50 (2012) 749.Google Scholar
  32. [32]
    Y. Shimizu and Y. Kuramashi, Grassmann tensor renormalization group approach to one-flavor lattice Schwinger model, Phys. Rev. D 90 (2014) 014508 [arXiv:1403.0642] [INSPIRE].ADSGoogle Scholar
  33. [33]
    Y. Shimizu and Y. Kuramashi, Critical behavior of the lattice Schwinger model with a topological term at θ = π using the Grassmann tensor renormalization group, Phys. Rev. D 90 (2014) 074503 [arXiv:1408.0897] [INSPIRE].ADSGoogle Scholar
  34. [34]
    S. Takeda and Y. Yoshimura, Grassmann tensor renormalization group for the one-flavor lattice Gross-Neveu model with finite chemical potential, PTEP 2015 (2015) 043B01 [arXiv:1412.7855] [INSPIRE].
  35. [35]
    U. Wolff, Cluster simulation of relativistic fermions in two space-time dimensions, Nucl. Phys. B 789 (2008) 258 [arXiv:0707.2872] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    Y. Shimizu, private communication.Google Scholar
  37. [37]
    Z.-C. Gu and X.-G. Wen, Tensor-Entanglement-Filtering Renormalization Approach and Symmetry Protected Topological Order, Phys. Rev. B 80 (2009) 155131 [arXiv:0903.1069] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Z.Y. Xie, J. Chen, M.P. Qin, J.W. Zhu, L.P. Yang and T. Xiang, Coarse-graining renormalization by higher-order singular value decomposition, Phys. Rev. B 86 (2012) 045139 [arXiv:1201.1144].ADSCrossRefGoogle Scholar
  39. [39]
    R. Sakai, S. Takeda and Y. Yoshimura, Higher order tensor renormalization group for relativistic fermion systems, PTEP 2017 (2017) 063B07 [arXiv:1705.07764] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Daisuke Kadoh
    • 1
  • Yoshinobu Kuramashi
    • 2
    • 3
  • Yoshifumi Nakamura
    • 3
  • Ryo Sakai
    • 4
  • Shinji Takeda
    • 4
  • Yusuke Yoshimura
    • 2
  1. 1.Research and Educational Center for Natural SciencesKeio UniversityYokohamaJapan
  2. 2.Center for Computational SciencesUniversity of TsukubaTsukubaJapan
  3. 3.RIKEN Advanced Institute for Computational ScienceKobeJapan
  4. 4.Institute for Theoretical PhysicsKanazawa UniversityKanazawaJapan

Personalised recommendations