Advertisement

Weak coupling limit of F-theory models with MSSM spectrum and massless U(1)’s

  • Damián Kaloni Mayorga Peña
  • Roberto Valandro
Open Access
Regular Article - Theoretical Physics

Abstract

We consider the Sen limit of several global F-theory compactifications, some of which exhibit an MSSM-like spectrum. We show that these indeed have a consistent limit where they can be viewed as resulting from an intersecting brane configuration in type IIB. We discuss the match of the fluxes and the chiral spectrum in detail. We find that some D5-tadpole canceling gauge fluxes do not lift to harmonic vertical four-form fluxes in the resolved F-theory manifold. We discuss the connection between splitting of curves at weak coupling and remnant discrete symmetries.

Keywords

F-Theory String Duality Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].
  3. [3]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2., Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].
  4. [4]
    V. Braun and D.R. Morrison, F-theory on Genus-One Fibrations, JHEP 08 (2014) 132 [arXiv:1401.7844] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    D.R. Morrison and W. Taylor, Sections, multisections and U(1) fields in F-theory, arXiv:1404.1527 [INSPIRE].
  6. [6]
    R. Donagi and M. Wijnholt, Model Building with F-theory, Adv. Theor. Math. Phys. 15 (2011) 1237 [arXiv:0802.2969] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory — I, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory — II: Experimental Predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    R. Donagi and M. Wijnholt, Breaking GUT Groups in F-theory, Adv. Theor. Math. Phys. 15 (2011) 1523 [arXiv:0808.2223] [INSPIRE].
  10. [10]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, F-theory Compactifications for Supersymmetric GUTs, JHEP 08 (2009) 030 [arXiv:0904.3932] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    R. Blumenhagen, T.W. Grimm, B. Jurke and T. Weigand, Global F-theory GUTs, Nucl. Phys. B 829 (2010) 325 [arXiv:0908.1784] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    T.W. Grimm, S. Krause and T. Weigand, F-Theory GUT Vacua on Compact Calabi-Yau Fourfolds, JHEP 07 (2010) 037 [arXiv:0912.3524] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, Monodromies, Fluxes and Compact Three-Generation F-theory GUTs, JHEP 08 (2009) 046 [arXiv:0906.4672] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, Compact F-theory GUTs with U(1) (PQ), JHEP 04 (2010) 095 [arXiv:0912.0272] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    S. Krause, C. Mayrhofer and T. Weigand, G 4 flux, chiral matter and singularity resolution in F-theory compactifications, Nucl. Phys. B 858 (2012) 1 [arXiv:1109.3454] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  16. [16]
    C. Mayrhofer, E. Palti and T. Weigand, U(1) symmetries in F-theory GUTs with multiple sections, JHEP 03 (2013) 098 [arXiv:1211.6742] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    J. Borchmann, C. Mayrhofer, E. Palti and T. Weigand, SU(5) Tops with Multiple U(1)s in F-theory, Nucl. Phys. B 882 (2014) 1 [arXiv:1307.2902] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    V. Braun, T.W. Grimm and J. Keitel, Geometric Engineering in Toric F-theory and GUTs with U(1) Gauge Factors, JHEP 12 (2013) 069 [arXiv:1306.0577] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    V. Braun, T.W. Grimm and J. Keitel, New Global F-theory GUTs with U(1) symmetries, JHEP 09 (2013) 154 [arXiv:1302.1854] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    M. Cvetič, A. Grassi, D. Klevers and H. Piragua, Chiral Four-Dimensional F-theory Compactifications With SU(5) and Multiple U(1)-Factors, JHEP 04 (2014) 010 [arXiv:1306.3987] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    I. García-Etxebarria, T.W. Grimm and J. Keitel, Yukawas and discrete symmetries in F-theory compactifications without section, JHEP 11 (2014) 125 [arXiv:1408.6448] [INSPIRE].
  22. [22]
    S. Krippendorf, D.K. Mayorga Pena, P.-K. Oehlmann and F. Ruehle, Rational F-theory GUTs without exotics, JHEP 07 (2014) 013 [arXiv:1401.5084] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Krippendorf, S. Schäfer-Nameki and J.-M. Wong, Froggatt-Nielsen meets Mordell-Weil: A Phenomenological Survey of Global F-theory GUTs with U(1)s, JHEP 11 (2015) 008 [arXiv:1507.05961] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    C. Lawrie, S. Schäfer-Nameki and J.-M. Wong, F-theory and All Things Rational: Surveying U(1) Symmetries with Rational sections, JHEP 09 (2015) 144 [arXiv:1504.05593] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    A. Sen, Orientifold limit of F-theory vacua, Phys. Rev. D 55 (1997) R7345 [hep-th/9702165] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    A. Clingher, R. Donagi and M. Wijnholt, The Sen Limit, Adv. Theor. Math. Phys. 18 (2014) 613 [arXiv:1212.4505] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    A. Collinucci and I. García-Etxebarria, E 6 Yukawa couplings in F-theory as D-brane instanton effects, JHEP 03 (2017) 155 [arXiv:1612.06874] [INSPIRE].
  28. [28]
    A. Collinucci, F. Denef and M. Esole, D-brane Deconstructions in IIB Orientifolds, JHEP 02 (2009) 005 [arXiv:0805.1573] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    A. Collinucci, New F-theory lifts, JHEP 08 (2009) 076 [arXiv:0812.0175] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    A. Collinucci, New F-theory lifts. II. Permutation orientifolds and enhanced singularities, JHEP 04 (2010) 076 [arXiv:0906.0003] [INSPIRE].
  31. [31]
    R. Blumenhagen, T.W. Grimm, B. Jurke and T. Weigand, F-theory uplifts and GUTs, JHEP 09 (2009) 053 [arXiv:0906.0013] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    A. Collinucci and R. Savelli, On Flux Quantization in F-theory, JHEP 02 (2012) 015 [arXiv:1011.6388] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    A.P. Braun, A. Collinucci and R. Valandro, G-flux in F-theory and algebraic cycles, Nucl. Phys. B 856 (2012) 129 [arXiv:1107.5337] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    S. Krause, C. Mayrhofer and T. Weigand, Gauge Fluxes in F-theory and Type IIB Orientifolds, JHEP 08 (2012) 119 [arXiv:1202.3138] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    A. Collinucci and R. Savelli, On Flux Quantization in F-theory II: Unitary and Symplectic Gauge Groups, JHEP 08 (2012) 094 [arXiv:1203.4542] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    M. Esole and R. Savelli, Tate Form and Weak Coupling Limits in F-theory, JHEP 06 (2013) 027 [arXiv:1209.1633] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    A.P. Braun, A. Collinucci and R. Valandro, The fate of U(1)’s at strong coupling in F-theory, JHEP 07 (2014) 028 [arXiv:1402.4054] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A.P. Braun, A. Collinucci and R. Valandro, Hypercharge flux in F-theory and the stable Sen limit, JHEP 07 (2014) 121 [arXiv:1402.4096] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Collinucci and R. Savelli, F-theory on singular spaces, JHEP 09 (2015) 100 [arXiv:1410.4867] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    L. Martucci and T. Weigand, Non-perturbative selection rules in F-theory, JHEP 09 (2015) 198 [arXiv:1506.06764] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    L. Martucci and T. Weigand, Hidden Selection Rules, M5-instantons and Fluxes in F-theory, JHEP 10 (2015) 131 [arXiv:1507.06999] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    S. Greiner and T.W. Grimm, Three-form periods on Calabi-Yau fourfolds: Toric hypersurfaces and F-theory applications, JHEP 05 (2017) 151 [arXiv:1702.03217] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    K.-S. Choi and T. Kobayashi, Towards the MSSM from F-theory, Phys. Lett. B 693 (2010) 330 [arXiv:1003.2126] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    K.-S. Choi, SU(3) × SU(2) × U(1) Vacua in F-theory, Nucl. Phys. B 842 (2011) 1 [arXiv:1007.3843] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    K.-S. Choi, On the Standard Model Group in F-theory, Eur. Phys. J. C 74 (2014) 2939 [arXiv:1309.7297] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Grassi, J. Halverson, J. Shaneson and W. Taylor, Non-Higgsable QCD and the Standard Model Spectrum in F-theory, JHEP 01 (2015) 086 [arXiv:1409.8295] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    M. Cvetič, D. Klevers, D.K.M. Peña, P.-K. Oehlmann and J. Reuter, Three-Family Particle Physics Models from Global F-theory Compactifications, JHEP 08 (2015) 087 [arXiv:1503.02068] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    J. Halverson and W. Taylor, ℙ1 -bundle bases and the prevalence of non-Higgsable structure in 4D F-theory models, JHEP 09 (2015) 086 [arXiv:1506.03204] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    L. Lin and T. Weigand, Towards the Standard Model in F-theory, Fortsch. Phys. 63 (2015) 55 [arXiv:1406.6071] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    L. Lin and T. Weigand, G 4 -flux and standard model vacua in F-theory, Nucl. Phys. B 913 (2016) 209 [arXiv:1604.04292] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  51. [51]
    D. Klevers, D.K. Mayorga Peña, P.-K. Oehlmann, H. Piragua and J. Reuter, F-Theory on all Toric Hypersurface Fibrations and its Higgs Branches, JHEP 01 (2015) 142 [arXiv:1408.4808] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  52. [52]
    C.-M. Chen, J. Knapp, M. Kreuzer and C. Mayrhofer, Global SO(10) F-theory GUTs, JHEP 10 (2010) 057 [arXiv:1005.5735] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  53. [53]
    I. Antoniadis and G.K. Leontaris, Building SO(10) models from F-theory, JHEP 08 (2012) 001 [arXiv:1205.6930] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    R. Tatar and W. Walters, GUT theories from Calabi-Yau 4-folds with SO(10) Singularities, JHEP 12 (2012) 092 [arXiv:1206.5090] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    R. Blumenhagen, V. Braun, T.W. Grimm and T. Weigand, GUTs in Type IIB Orientifold Compactifications, Nucl. Phys. B 815 (2009) 1 [arXiv:0811.2936] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    T.W. Grimm, M. Kerstan, E. Palti and T. Weigand, Massive Abelian Gauge Symmetries and Fluxes in F-theory, JHEP 12 (2011) 004 [arXiv:1107.3842] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    T. Gomez and E.R. Sharpe, D-branes and scheme theory, hep-th/0008150 [INSPIRE].
  58. [58]
    R. Donagi, S. Katz and E. Sharpe, Spectra of D-branes with Higgs vevs, Adv. Theor. Math. Phys. 8 (2004) 813 [hep-th/0309270] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  59. [59]
    J.J. Heckman, Y. Tachikawa, C. Vafa and B. Wecht, N = 1 SCFTs from Brane Monodromy, JHEP 11 (2010) 132 [arXiv:1009.0017] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-Branes and Monodromy, JHEP 07 (2011) 030 [arXiv:1010.5780] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    L.B. Anderson, J.J. Heckman and S. Katz, T-Branes and Geometry, JHEP 05 (2014) 080 [arXiv:1310.1931] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    A. Collinucci, S. Giacomelli, R. Savelli and R. Valandro, T-branes through 3d mirror symmetry, JHEP 07 (2016) 093 [arXiv:1603.00062] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    J. Borchmann, C. Mayrhofer, E. Palti and T. Weigand, Elliptic fibrations for SU(5) × U(1) × U(1) F-theory vacua, Phys. Rev. D 88 (2013) 046005 [arXiv:1303.5054] [INSPIRE].ADSGoogle Scholar
  64. [64]
    M. Cvetič, D. Klevers and H. Piragua, F-Theory Compactifications with Multiple U(1)-Factors: Constructing Elliptic Fibrations with Rational sections, JHEP 06 (2013) 067 [arXiv:1303.6970] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  65. [65]
    M. Cvetič, D. Klevers and H. Piragua, F-Theory Compactifications with Multiple U(1)-Factors: Addendum, JHEP 12 (2013) 056 [arXiv:1307.6425] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  66. [66]
    D. Klevers and W. Taylor, Three-Index Symmetric Matter Representations of SU(2) in F-theory from Non-Tate Form Weierstrass Models, JHEP 06 (2016) 171 [arXiv:1604.01030] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  67. [67]
    M. Cvetič, R. Donagi, D. Klevers, H. Piragua and M. Poretschkin, F-theory vacua with3 gauge symmetry, Nucl. Phys. B 898 (2015) 736 [arXiv:1502.06953] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  68. [68]
    R. Blumenhagen, M. Cvetič and T. Weigand, Spacetime instanton corrections in 4D string vacua: The Seesaw mechanism for D-brane models, Nucl. Phys. B 771 (2007) 113 [hep-th/0609191] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    L.E. Ibáñez and A.M. Uranga, Neutrino Majorana Masses from String Theory Instanton Effects, JHEP 03 (2007) 052 [hep-th/0609213] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    B. Florea, S. Kachru, J. McGreevy and N. Saulina, Stringy Instantons and Quiver Gauge Theories, JHEP 05 (2007) 024 [hep-th/0610003] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  71. [71]
    R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-Brane Instantons in Type II Orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    M. Berasaluce-Gonzalez, L.E. Ibáñez, P. Soler and A.M. Uranga, Discrete gauge symmetries in D-brane models, JHEP 12 (2011) 113 [arXiv:1106.4169] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  73. [73]
    M. Berasaluce-Gonzalez, P.G. Camara, F. Marchesano and A.M. Uranga, Zp charged branes in flux compactifications, JHEP 04 (2013) 138 [arXiv:1211.5317] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  74. [74]
    R. Donagi, S. Katz and M. Wijnholt, Weak Coupling, Degeneration and Log Calabi-Yau Spaces, arXiv:1212.0553 [INSPIRE].
  75. [75]
    D.R. Morrison and D.S. Park, F-Theory and the Mordell-Weil Group of Elliptically-Fibered Calabi-Yau Threefolds, JHEP 10 (2012) 128 [arXiv:1208.2695] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    M. Bershadsky, K.A. Intriligator, S. Kachru, D.R. Morrison, V. Sadov and C. Vafa, Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  77. [77]
    B.R. Greene, D.R. Morrison and M.R. Plesser, Mirror manifolds in higher dimension, Commun. Math. Phys. 173 (1995) 559 [hep-th/9402119] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  78. [78]
    M. Bies, C. Mayrhofer, C. Pehle and T. Weigand, Chow groups, Deligne cohomology and massless matter in F-theory, arXiv:1402.5144 [INSPIRE].
  79. [79]
    M. Bies, C. Mayrhofer and T. Weigand, Gauge Backgrounds and Zero-Mode Counting in F-theory, JHEP 11 (2017) 081 [arXiv:1706.04616] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  80. [80]
    T.W. Grimm and T. Weigand, On Abelian Gauge Symmetries and Proton Decay in Global F-theory GUTs, Phys. Rev. D 82 (2010) 086009 [arXiv:1006.0226] [INSPIRE].ADSGoogle Scholar
  81. [81]
    J. Marsano and S. Schäfer-Nameki, Yukawas, G-flux and Spectral Covers from Resolved Calabi-Yau’s, JHEP 11 (2011) 098 [arXiv:1108.1794] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  82. [82]
    L. Lin, C. Mayrhofer, O. Till and T. Weigand, Fluxes in F-theory Compactifications on Genus-One Fibrations, JHEP 01 (2016) 098 [arXiv:1508.00162] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  83. [83]
    K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G - flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  84. [84]
    T.W. Grimm and H. Hayashi, F-theory fluxes, Chirality and Chern-Simons theories, JHEP 03 (2012) 027 [arXiv:1111.1232] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  85. [85]
    T.W. Grimm and R. Savelli, Gravitational Instantons and Fluxes from M/F-theory on Calabi-Yau fourfolds, Phys. Rev. D 85 (2012) 026003 [arXiv:1109.3191] [INSPIRE].ADSGoogle Scholar
  86. [86]
    M. Cvetič, T.W. Grimm and D. Klevers, Anomaly Cancellation And Abelian Gauge Symmetries In F-theory, JHEP 02 (2013) 101 [arXiv:1210.6034] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  87. [87]
    E. Witten, On flux quantization in M-theory and the effective action, J. Geom. Phys. 22 (1997) 1 [hep-th/9609122] [INSPIRE].
  88. [88]
    H. Hayashi, R. Tatar, Y. Toda, T. Watari and M. Yamazaki, New Aspects of Heterotic-F Theory Duality, Nucl. Phys. B 806 (2009) 224 [arXiv:0805.1057] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  89. [89]
    L.E. Ibáñez, R. Rabadán and A.M. Uranga, Anomalous U(1)’s in type-I and type IIB D = 4, N = 1 string vacua, Nucl. Phys. B 542 (1999) 112 [hep-th/9808139] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  90. [90]
    E. Poppitz, On the one loop Fayet-Iliopoulos term in chiral four-dimensional type-I orbifolds, Nucl. Phys. B 542 (1999) 31 [hep-th/9810010] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  91. [91]
    G. Aldazabal, S. Franco, L.E. Ibáñez, R. Rabadán and A.M. Uranga, D = 4 chiral string compactifications from intersecting branes, J. Math. Phys. 42 (2001) 3103 [hep-th/0011073] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  92. [92]
    R. Donagi and M. Wijnholt, Higgs Bundles and UV Completion in F-theory, Commun. Math. Phys. 326 (2014) 287 [arXiv:0904.1218] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  93. [93]
    R. Minasian and G.W. Moore, K theory and Ramond-Ramond charge, JHEP 11 (1997) 002 [hep-th/9710230] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  94. [94]
    D.S. Freed and E. Witten, Anomalies in string theory with D-branes, Asian J. Math. 3 (1999) 819 [hep-th/9907189] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  95. [95]
    A. Font and L.E. Ibáñez, Yukawa Structure from U(1) Fluxes in F-theory Grand Unification, JHEP 02 (2009) 016 [arXiv:0811.2157] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  96. [96]
    J.J. Heckman and C. Vafa, Flavor Hierarchy From F-theory, Nucl. Phys. B 837 (2010) 137 [arXiv:0811.2417] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  97. [97]
    S. Cecotti, M.C.N. Cheng, J.J. Heckman and C. Vafa, Yukawa Couplings in F-theory and Non-Commutative Geometry, arXiv:0910.0477 [INSPIRE].
  98. [98]
    F. Marchesano and L. Martucci, Non-perturbative effects on seven-brane Yukawa couplings, Phys. Rev. Lett. 104 (2010) 231601 [arXiv:0910.5496] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    G.K. Leontaris and G.G. Ross, Yukawa couplings and fermion mass structure in F-theory GUTs, JHEP 02 (2011) 108 [arXiv:1009.6000] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  100. [100]
    L. Aparicio, A. Font, L.E. Ibáñez and F. Marchesano, Flux and Instanton Effects in Local F-theory Models and Hierarchical Fermion Masses, JHEP 08 (2011) 152 [arXiv:1104.2609] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  101. [101]
    E. Palti, Wavefunctions and the Point of E 8 in F-theory, JHEP 07 (2012) 065 [arXiv:1203.4490] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    A. Font, F. Marchesano, D. Regalado and G. Zoccarato, Up-type quark masses in SU(5) F-theory models, JHEP 11 (2013) 125 [arXiv:1307.8089] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    F. Marchesano, D. Regalado and G. Zoccarato, Yukawa hierarchies at the point of E 8 in F-theory, JHEP 04 (2015) 179 [arXiv:1503.02683] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    A. Font, Yukawa couplings in string theory: the case for F-theory GUT’s, J. Phys. Conf. Ser. 651 (2015) 012009 [INSPIRE].CrossRefGoogle Scholar
  105. [105]
    F. Carta, F. Marchesano and G. Zoccarato, Fitting fermion masses and mixings in F-theory GUTs, JHEP 03 (2016) 126 [arXiv:1512.04846] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    A.P. Braun and T. Watari, On Singular Fibres in F-theory, JHEP 07 (2013) 031 [arXiv:1301.5814] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  107. [107]
    A. Collinucci and R. Savelli, T-branes as branes within branes, JHEP 09 (2015) 161 [arXiv:1410.4178] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  108. [108]
    P. Candelas and A. Font, Duality between the webs of heterotic and type-II vacua, Nucl. Phys. B 511 (1998) 295 [hep-th/9603170] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  109. [109]
    P. Candelas, E. Perevalov and G. Rajesh, Comments on A, B, C chains of heterotic and type-II vacua, Nucl. Phys. B 502 (1997) 594 [hep-th/9703148] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  110. [110]
    V. Bouchard and H. Skarke, Affine Kac-Moody algebras, CHL strings and the classification of tops, Adv. Theor. Math. Phys. 7 (2003) 205 [hep-th/0303218] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  111. [111]
    A.P. Braun and T. Watari, The Vertical, the Horizontal and the Rest: anatomy of the middle cohomology of Calabi-Yau fourfolds and F-theory applications, JHEP 01 (2015) 047 [arXiv:1408.6167] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.The Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  2. 2.Dipartimento di FisicaUniversità di TriesteTriesteItaly
  3. 3.INFN, Sezione di TriesteTriesteItaly

Personalised recommendations