Radiative corrections to masses and couplings in universal extra dimensions

Open Access
Regular Article - Theoretical Physics


Models with an orbifolded universal extra dimension receive important loop-induced corrections to the masses and couplings of Kaluza-Klein (KK) particles. The dominant contributions stem from so-called boundary terms which violate KK number. Previously, only the parts of these boundary terms proportional to ln(ΛR) have been computed, where R is the radius of the extra dimension and Λ is cut-off scale. However, for typical values of ΛR ∼ 10 · · · 50, the logarithms are not particularly large and non-logarithmic contributions may be numerically important. In this paper, these remaining finite terms are computed and their phenomenological impact is discussed. It is shown that the finite terms have a significant impact on the KK mass spectrum. Furthermore, one finds new KK-number violating interactions that do not depend on ln(ΛR) but nevertheless are non-zero. These lead to new production and decay channels for level-2 KK particles at colliders.


Phenomenology of Field Theories in Higher Dimensions NLO Computations 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [INSPIRE].
  2. [2]
    H.-C. Cheng, J.L. Feng and K.T. Matchev, Kaluza-Klein dark matter, Phys. Rev. Lett. 89 (2002) 211301 [hep-ph/0207125] [INSPIRE].
  3. [3]
    G. Servant and T.M.P. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].
  4. [4]
    F. Burnell and G.D. Kribs, The abundance of Kaluza-Klein dark matter with coannihilation, Phys. Rev. D 73 (2006) 015001 [hep-ph/0509118] [INSPIRE].
  5. [5]
    K. Kong and K.T. Matchev, Precise calculation of the relic density of Kaluza-Klein dark matter in universal extra dimensions, JHEP 01 (2006) 038 [hep-ph/0509119] [INSPIRE].
  6. [6]
    S. Arrenberg, L. Baudis, K. Kong, K.T. Matchev and J. Yoo, Kaluza-Klein Dark Matter: Direct Detection vis-a-vis LHC, Phys. Rev. D 78 (2008) 056002 [arXiv:0805.4210] [INSPIRE].ADSGoogle Scholar
  7. [7]
    M. Kakizaki, S. Matsumoto, Y. Sato and M. Senami, Significant effects of second KK particles on LKP dark matter physics, Phys. Rev. D 71 (2005) 123522 [hep-ph/0502059] [INSPIRE].
  8. [8]
    M. Kakizaki, S. Matsumoto, Y. Sato and M. Senami, Relic abundance of LKP dark matter in UED model including effects of second KK resonances, Nucl. Phys. B 735 (2006) 84 [hep-ph/0508283] [INSPIRE].
  9. [9]
    M. Kakizaki, S. Matsumoto and M. Senami, Relic abundance of dark matter in the minimal universal extra dimension model, Phys. Rev. D 74 (2006) 023504 [hep-ph/0605280] [INSPIRE].
  10. [10]
    G. Bélanger, M. Kakizaki and A. Pukhov, Dark matter in UED: The role of the second KK level, JCAP 02 (2011) 009 [arXiv:1012.2577] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    H.-C. Cheng, K.T. Matchev and M. Schmaltz, Bosonic supersymmetry? Getting fooled at the CERN LHC, Phys. Rev. D 66 (2002) 056006 [hep-ph/0205314] [INSPIRE].
  12. [12]
    T.G. Rizzo, Probes of universal extra dimensions at colliders, Phys. Rev. D 64 (2001) 095010 [hep-ph/0106336] [INSPIRE].
  13. [13]
    C. Macesanu, C.D. McMullen and S. Nandi, Collider implications of universal extra dimensions, Phys. Rev. D 66 (2002) 015009 [hep-ph/0201300] [INSPIRE].
  14. [14]
    J.M. Smillie and B.R. Webber, Distinguishing spins in supersymmetric and universal extra dimension models at the large hadron collider, JHEP 10 (2005) 069 [hep-ph/0507170] [INSPIRE].
  15. [15]
    J.A.R. Cembranos, J.L. Feng and L.E. Strigari, Exotic Collider Signals from the Complete Phase Diagram of Minimal Universal Extra Dimensions, Phys. Rev. D 75 (2007) 036004 [hep-ph/0612157] [INSPIRE].
  16. [16]
    A. Freitas and D. Wiegand, QCD corrections to massive color-octet vector boson pair production, JHEP 09 (2017) 058 [arXiv:1706.09442] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    ATLAS collaboration, Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 04 (2015) 116 [arXiv:1501.03555] [INSPIRE].
  18. [18]
    N. Deutschmann, T. Flacke and J.S. Kim, Current LHC Constraints on Minimal Universal Extra Dimensions, Phys. Lett. B 771 (2017) 515 [arXiv:1702.00410] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Beuria, A. Datta, D. Debnath and K.T. Matchev, LHC Collider Phenomenology of Minimal Universal Extra Dimensions, arXiv:1702.00413 [INSPIRE].
  20. [20]
    H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev. D 66 (2002) 036005 [hep-ph/0204342] [INSPIRE].
  21. [21]
    A. Datta, K. Kong and K.T. Matchev, Discrimination of supersymmetry and universal extra dimensions at hadron colliders, Phys. Rev. D 72 (2005) 096006 [Erratum ibid. D 72 (2005) 119901] [hep-ph/0509246] [INSPIRE].
  22. [22]
    H. Georgi, A.K. Grant and G. Hailu, Brane couplings from bulk loops, Phys. Lett. B 506 (2001) 207 [hep-ph/0012379] [INSPIRE].
  23. [23]
    Z. Chacko, M.A. Luty and E. Ponton, Massive higher dimensional gauge fields as messengers of supersymmetry breaking, JHEP 07 (2000) 036 [hep-ph/9909248] [INSPIRE].
  24. [24]
    G. Bhattacharyya, A. Datta, S.K. Majee and A. Raychaudhuri, Power law blitzkrieg in universal extra dimension scenarios, Nucl. Phys. B 760 (2007) 117 [hep-ph/0608208] [INSPIRE].
  25. [25]
    R.S. Chivukula, D.A. Dicus and H.-J. He, Unitarity of compactified five-dimensional Yang-Mills theory, Phys. Lett. B 525 (2002) 175 [hep-ph/0111016] [INSPIRE].
  26. [26]
    D. Hooper and S. Profumo, Dark matter and collider phenomenology of universal extra dimensions, Phys. Rept. 453 (2007) 29 [hep-ph/0701197] [INSPIRE].
  27. [27]
    T. Flacke, A. Menon and D.J. Phalen, Non-minimal universal extra dimensions, Phys. Rev. D 79 (2009) 056009 [arXiv:0811.1598] [INSPIRE].ADSGoogle Scholar
  28. [28]
    T. Flacke, K. Kong and S.C. Park, A Review on Non-Minimal Universal Extra Dimensions, Mod. Phys. Lett. A 30 (2015) 1530003 [arXiv:1408.4024] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  29. [29]
    T. Flacke, K. Kong and S.C. Park, Phenomenology of Universal Extra Dimensions with Bulk-Masses and Brane-Localized Terms, JHEP 05 (2013) 111 [arXiv:1303.0872] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    A. Datta, K. Kong and K.T. Matchev, Minimal Universal Extra Dimensions in CalcHEP/CompHEP, New J. Phys. 12 (2010) 075017 [arXiv:1002.4624] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Belyaev, M. Brown, J. Moreno and C. Papineau, Discovering Minimal Universal Extra Dimensions (MUED) at the LHC, JHEP 06 (2013) 080 [arXiv:1212.4858] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
  33. [33]
    V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].
  34. [34]
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].
  35. [35]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
  36. [36]
    N. Craig, P. Draper, K. Kong, Y. Ng and D. Whiteson, The unexplored landscape of two-body resonances, arXiv:1610.09392 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Ayres Freitas
    • 1
  • Kyoungchul Kong
    • 2
  • Daniel Wiegand
    • 1
  1. 1.Pittsburgh Particle-physics Astro-physics & Cosmology Center (PITT-PACC), Department of Physics & AstronomyUniversity of PittsburghPittsburghU.S.A.
  2. 2.Department of Physics and AstronomyUniversity of KansasLawrenceU.S.A.

Personalised recommendations