Advertisement

Conformal invariance of (0, 2) sigma models on Calabi-Yau manifolds

  • Ian T. Jardine
  • Callum Quigley
Open Access
Regular Article - Theoretical Physics
  • 58 Downloads

Abstract

Long ago, Nemeschansky and Sen demonstrated that the Ricci-flat metric on a Calabi-Yau manifold could be corrected, order by order in perturbation theory, to produce a conformally invariant (2, 2) nonlinear sigma model. Here we extend this result to (0, 2) sigma models for stable holomorphic vector bundles over Calabi-Yaus.

Keywords

Conformal Field Models in String Theory Superstrings and Heterotic Strings Renormalization Group 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L. Álvarez-Gaumé, S.R. Coleman and P.H. Ginsparg, Finiteness of Ricci Flat N = 2 Supersymmetric σ Models, Commun. Math. Phys. 103 (1986) 423 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M.T. Grisaru, A.E.M. van de Ven and D. Zanon, Four Loop β-function for the N = 1 and N =2 Supersymmetric Nonlinear σ-model in Two-Dimensions,Phys. Lett. B 173(1986) 423 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    D. Nemeschansky and A. Sen, Conformal Invariance of Supersymmetric σ Models on Calabi-Yau Manifolds, Phys. Lett. B 178 (1986) 365 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    M. Dine, N. Seiberg, X.G. Wen and E. Witten, Nonperturbative Effects on the String World Sheet, Nucl. Phys. B 278 (1986) 769 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    E. Witten, New Issues in Manifolds of SU(3) Holonomy, Nucl. Phys. B 268 (1986) 79 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    L. Witten and E. Witten, Large Radius Expansion of Superstring Compactifications, Nucl. Phys. B 281 (1987) 109 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    J. Distler and B.R. Greene, Aspects of (2, 0) String Compactifications, Nucl. Phys. B 304 (1988) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    A. Basu and S. Sethi, World sheet stability of (0, 2) linear σ-models, Phys. Rev. D 68 (2003) 025003 [hep-th/0303066] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    C. Beasley and E. Witten, Residues and world sheet instantons, JHEP 10 (2003) 065 [hep-th/0304115] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    M. Bertolini and M.R. Plesser, Worldsheet instantons and (0, 2) linear models, JHEP 08 (2015) 081 [arXiv:1410.4541] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    L.B. Anderson, J. Gray and E. Sharpe, Algebroids, Heterotic Moduli Spaces and the Strominger System, JHEP 07 (2014) 037 [arXiv:1402.1532] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    X. de la Ossa and E.E. Svanes, Holomorphic Bundles and the Moduli Space of N = 1 Supersymmetric Heterotic Compactifications, JHEP 10 (2014) 123 [arXiv:1402.1725] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Dine and N. Seiberg, Nonrenormalization Theorems in Superstring Theory, Phys. Rev. Lett. 57 (1986) 2625 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    C.M. Hull and E. Witten, Supersymmetric σ-models and the Heterotic String, Phys. Lett. B 160 (1985) 398 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    A. Sen, (2, 0) Supersymmetry and Space-Time Supersymmetry in the Heterotic String Theory, Nucl. Phys. B 278 (1986) 289 [INSPIRE].
  16. [16]
    S. Groot Nibbelink and L. Horstmeyer, Super Weyl invariance: BPS equations from heterotic worldsheets, JHEP 07 (2012) 054 [arXiv:1203.6827] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  17. [17]
    J. Gillard, G. Papadopoulos and D. Tsimpis, Anomaly, fluxes and (2, 0) heterotic string compactifications, JHEP 06 (2003) 035 [hep-th/0304126] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    C. Quigley, S. Sethi and M. Stern, Novel Branches of (0, 2) Theories, JHEP 09 (2012) 064 [arXiv:1206.3228] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    A. Strominger, Superstrings with Torsion, Nucl. Phys. B 274 (1986) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    K. Becker and K. Dasgupta, Heterotic strings with torsion, JHEP 11 (2002) 006 [hep-th/0209077] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    K. Becker, M. Becker, P.S. Green, K. Dasgupta and E. Sharpe, Compactifications of heterotic strings on non-Kähler complex manifolds. 2, Nucl. Phys. B 678 (2004) 19 [hep-th/0310058] [INSPIRE].
  22. [22]
    I.V. Melnikov, R. Minasian and S. Sethi, Heterotic fluxes and supersymmetry, JHEP 06 (2014) 174 [arXiv:1403.4298] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    X. de la Ossa and E.E. Svanes, Connections, Field Redefinitions and Heterotic Supergravity, JHEP 12 (2014) 008 [arXiv:1409.3347] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, Cambridge Mathematical Library, Cambridge University Press, Cambridge, U.K. (2010).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of TorontoTorontoCanada

Personalised recommendations