Algebraic geometry and Bethe ansatz. Part I. The quotient ring for BAE

  • Yunfeng Jiang
  • Yang ZhangEmail author
Open Access
Regular Article - Theoretical Physics


In this paper and upcoming ones, we initiate a systematic study of Bethe ansatz equations for integrable models by modern computational algebraic geometry. We show that algebraic geometry provides a natural mathematical language and powerful tools for understanding the structure of solution space of Bethe ansatz equations. In particular, we find novel efficient methods to count the number of solutions of Bethe ansatz equations based on Gröbner basis and quotient ring. We also develop analytical approach based on companion matrix to perform the sum of on-shell quantities over all physical solutions without solving Bethe ansatz equations explicitly. To demonstrate the power of our method, we revisit the completeness problem of Bethe ansatz of Heisenberg spin chain, and calculate the sum rules of OPE coefficients in planar \( \mathcal{N}=4 \) super-Yang-Mills theory.


Bethe Ansatz Differential and Algebraic Geometry Lattice Integrable Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    H. Bethe, On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chain (Zur theorie der metalle), Z. Phys. 71 (1931) 205 [INSPIRE].
  2. [2]
    V.E. Korepin, N.M. Bogoliubov and A.G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge University Press, Cambridge U.K. (1993).Google Scholar
  3. [3]
    L.D. Faddeev, How algebraic Bethe ansatz works for integrable model, hep-th/9605187 [INSPIRE].
  4. [4]
    N. Yu. Reshetikhin, A method of functional equations in the theory of exactly solvable quantum systems, Lett. Math. Phys. 7 (1983) 205 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    Y. Wang, W.-L. Yang, J. Cao and K. Shi, Off-diagonal Bethe ansatz for exactly solvable models, Springer, Germany (2015).Google Scholar
  6. [6]
    M. Takahashi, One-dimensional Hubbard model at finite temperature, Prog. Theor. Phys. 47 (1972) 69.ADSCrossRefGoogle Scholar
  7. [7]
    B. Sutherland, Low-lying eigenstates of the one-dimensional Heisenberg ferromagnet for any magnetization and momentum, Phys. Rev. Lett. 74 (1995) 816 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    N. Beisert, J.A. Minahan, M. Staudacher and K. Zarembo, Stringing spins and spinning strings, JHEP 09 (2003) 010 [hep-th/0306139] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    V.A. Kazakov, A. Marshakov, J.A. Minahan and K. Zarembo, Classical/quantum integrability in AdS/CFT, JHEP 05 (2004) 024 [hep-th/0402207] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    R.P. Langlands and Y. Saint-Aubin, Algebro-geometric aspects of the Bethe equations, in Strings and symmetries, G. Aktas et al. eds., Springer, Germany (1995).Google Scholar
  11. [11]
    W. Hao, R.I. Nepomechie and A.J. Sommese, Completeness of solutions of Bethe’s equations, Phys. Rev. E 88 (2013) 052113 [arXiv:1308.4645] [INSPIRE].
  12. [12]
    P. Vieira and T. Wang, Tailoring non-compact spin chains, JHEP 10 (2014) 035 [arXiv:1311.6404] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    B. Basso et al., Asymptotic four point functions, arXiv:1701.04462 [INSPIRE].
  14. [14]
    R. Huang, J. Rao, B. Feng and Y.-H. He, An algebraic approach to the scattering equations, JHEP 12 (2015) 056 [arXiv:1509.04483] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    M. Sogaard and Y. Zhang, Scattering equations and global duality of residues, Phys. Rev. D 93 (2016) 105009 [arXiv:1509.08897] [INSPIRE].
  16. [16]
    J. Bosma, M. Sogaard and Y. Zhang, The polynomial form of the scattering equations is an H-basis, Phys. Rev. D 94 (2016) 041701 [arXiv:1605.08431] [INSPIRE].
  17. [17]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].
  19. [19]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    F. Cachazo, S. He and E.Y. Yuan, Einstein-Yang-Mills scattering amplitudes from scattering equations, JHEP 01 (2015) 121 [arXiv:1409.8256] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein To Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    R. Hartshorne, Algebraic geometry, Springer, Germany (1977).Google Scholar
  23. [23]
    P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley Classics Library. John Wiley & Sons, Inc., New York U.S.A. (1994).Google Scholar
  24. [24]
    D.A. Cox, J. Little and D. O’Shea, Ideals, varieties, and algorithms, Undergraduate Texts in Mathematics, Springer, Germany (2015).Google Scholar
  25. [25]
    D.A. Cox, J.B. Little and D. O’Shea, Using algebraic geometry, Graduate texts in mathematics, Springer, Germany (1998).Google Scholar
  26. [26]
    Y. Zhang, Lecture notes on multi-loop integral reduction and applied algebraic geometry, arXiv:1612.02249 [INSPIRE].
  27. [27]
    B. Buchberger, A theoretical basis for the reduction of polynomials to canonical forms, SIGSAM Bull. 10 (1976) 19.MathSciNetGoogle Scholar
  28. [28]
    J.-C. Faugére, A new efficient algorithm for computing Gröbner bases (F4), J. Pure Appl. Alg. 139 (1999) 61.CrossRefzbMATHGoogle Scholar
  29. [29]
    J.C. Faugère, A new efficient algorithm for computing Gröbner bases without reduction to zero (F5), in the proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation (ISSAC’02), July 7-10, Lille, France (2002).Google Scholar
  30. [30]
    W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 4-1-0 — A computer algebra system for polynomial computations, (2016).
  31. [31]
    W. Hao, R.I. Nepomechie and A.J. Sommese, Singular solutions, repeated roots and completeness for higher-spin chains, J. Stat. Mech. 1403 (2014) P03024 [arXiv:1312.2982] [INSPIRE].
  32. [32]
    M. Takahashi, One-dimensional heisenberg model at finite temperature, Prog. Theor. Phys. 46 (1971) 401.ADSCrossRefGoogle Scholar
  33. [33]
    A. Kirillov, Combinatorial identities, and completeness of eigenstates of the Heisenberg magnet, J. Math. Sci. 30 (1985) 2298.CrossRefGoogle Scholar
  34. [34]
    L.V. Avdeev and A.A. Vladimirov, Exceptional solutions to the Bethe ansatz equations, Theor. Math. Phys. 69 (1986) 1071.MathSciNetCrossRefGoogle Scholar
  35. [35]
    F.H.L. Essler, V.E. Korepin and K. Schoutens, Fine structure of the Bethe ansatz for the spin-1/2 Heisenberg XXX model, J. Phys. A 25 (1992) 4115.Google Scholar
  36. [36]
    R. Siddharthan, Singularities in the Bethe solution of the XXX and XXZ Heisenberg spin chains, cond-mat/9804210.
  37. [37]
    J.D. Noh, D.S. Lee and D. Kim, Origin of the singular Bethe ansatz solutions for the Heisenberg XXZ spin chain, Physica A 287 (2000) 167 [cond-mat/0001175].
  38. [38]
    K. Fabricius and B.M. McCoy, Bethe’s equation is incomplete for the XXZ model at roots of unity, J. Statist. Phys. 103 (2001) 647 [cond-mat/0009279] [INSPIRE].
  39. [39]
    R.J. Baxter, Completeness of the Bethe ansatz for the six and eight vertex models, J. Statist. Phys. 108 (2002) 1 [cond-mat/0111188] [INSPIRE].
  40. [40]
    E. Mukhin, V. Tarasov and A. Varchenko, Bethe algebra of homogeneous XXX Heisenberg model has simple spectrum, arXiv:0706.0688.
  41. [41]
    A.N. Kirillov and R. Sakamoto, Singular solutions to the Bethe ansatz equations and rigged configurations, J. Phys. A 47 (2014) 205207 [arXiv:1402.0651].
  42. [42]
    A.N. Kirillov and R. Sakamoto, Some remarks on Nepomechie-Wang eigenstates for spin 1/2 XXX model, arXiv:1406.1958.
  43. [43]
    R.I. Nepomechie and C. Wang, Algebraic Bethe ansatz for singular solutions, J. Phys. A 46 (2013) 325002 [arXiv:1304.7978] [INSPIRE].
  44. [44]
    D. Bernshtein, The number of roots of a system of equations, Funct. Anal. Appl. 9 (1975) 183.MathSciNetCrossRefGoogle Scholar
  45. [45]
    A. Kushnirenko, Newton polytopes and the Bézout theorem, Funct. Anal. Appl. 10 (1976) 233.CrossRefzbMATHGoogle Scholar
  46. [46]
    A. Khovanskii, Newton polyhedra and the genus of complete intersection, Funct. Anal. Appl. 12 (1978) 38.MathSciNetCrossRefGoogle Scholar
  47. [47]
    J.C. Faugère, FGb: a library for computing Gröbner bases, in Mathematical Software — ICMS 2010, K. Fukuda et al. eds., Lecture Notes in Computer Science volume 6327, Springer, Berlin, Germany (2010).Google Scholar
  48. [48]
    N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    D. Chicherin, J. Drummond, P. Heslop and E. Sokatchev, All three-loop four-point correlators of half-BPS operators in planar \( \mathcal{N}=4 \) SYM, JHEP 08 (2016) 053 [arXiv:1512.02926] [INSPIRE].
  50. [50]
    C. Marboe and D. Volin, Fast analytic solver of rational Bethe equations, J. Phys. A 50 (2017) 204002 [arXiv:1608.06504] [INSPIRE].
  51. [51]
    C. Marboe and D. Volin, The full spectrum of AdS5/CFT4 I: Representation theory and one-loop Q-system, arXiv:1701.03704 [INSPIRE].
  52. [52]
    Y. Jiang and Y. Zhang, Algebraic geometry and bethe ansatz. Part II. The quotient ring of rational Q -systems, to appear.Google Scholar
  53. [53]
    N. Beisert and M. Staudacher, Long-range PSU (2, 2|4) Bethe Ansatze for gauge theory and strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190] [INSPIRE].
  54. [54]
    C.-N. Yang, Some exact results for the many body problems in one dimension with repulsive delta function interaction, Phys. Rev. Lett. 19 (1967) 1312 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    P.P. Kulish and N. Yu. Reshetikhin, Diagonalization of GL(N) invariant transfer matrices and quantum N wave system (Lee model), J. Phys. A 16 (1983) L591 [INSPIRE].
  56. [56]
    S. Belliard and É. Ragoucy, Nested Bethe ansatz for ‘all’ closed spin chains, J. Phys. A 41 (2008) 295202 [arXiv:0804.2822] [INSPIRE].
  57. [57]
    E.K. Sklyanin, Boundary conditions for integrable quantum systems, J. Phys. A 21 (1988) 2375 [INSPIRE].
  58. [58]
    R.I. Nepomechie and F. Ravanini, Completeness of the Bethe ansatz solution of the open XXZ chain with nondiagonal boundary terms, J. Phys. A 36 (2003) 11391 [hep-th/0307095] [INSPIRE].
  59. [59]
    J. Cao, W.-L. Yang, K. Shi and Y. Wang, Off-diagonal Bethe ansatz solution of the XXX spin-chain with arbitrary boundary conditions, Nucl. Phys. B 875 (2013) 152 [arXiv:1306.1742] [INSPIRE].
  60. [60]
    E. Brattain, N. Do and A. Saenz, The completeness of the Bethe ansatz for the periodic ASEP, arXiv:1511.03762.
  61. [61]
    R.S. Vieira and A. Lima-Santos, Where are the roots of the Bethe Ansatz equations?, Phys. Lett. A 379 (2015) 2150 [arXiv:1502.05316].
  62. [62]
    R.S. Vieira, On the number of roots of self-inversive polynomials on the complex unit circle, arXiv:1504.00615.
  63. [63]
    K. Fabricius and B.M. McCoy, Bethe’s equation is incomplete for the XXZ model at roots of unity, J. Statist. Phys. 103 (2001) 647 [cond-mat/0009279] [INSPIRE].
  64. [64]
    R. Suzuki, Refined counting of necklaces in one-loop \( \mathcal{N}=4 \) SYM, JHEP 06 (2017) 055 [arXiv:1703.05798] [INSPIRE].
  65. [65]
    A.G. Izergin and V.E. Korepin, Pauli principle for one-dimensional bosons and the algebraic Bethe ansatz, Lett. Math. Phys. 6 (1982) 283 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    N. Beisert, V. Dippel and M. Staudacher, A novel long range spin chain and planar N = 4 super Yang-Mills, JHEP 07 (2004) 075 [hep-th/0405001] [INSPIRE].
  67. [67]
    B. Boyer et al., GBLA — Gröbner Basis Linear Algebra package arXiv:1602.06097.
  68. [68]
    C. Eder, GB: Implementation of Faugère’s F4 algorithm using gbla for the linear algebra part, (2017).
  69. [69]
    M. Brickenstein, Slimgb: Gröbner bases with slim polynomials, Rev. Mat. Complutense 23 (2010) 453.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institut für Theoretische Physik, ETH ZürichZürichSwitzerland

Personalised recommendations