Advertisement

A computer test of holographic flavour dynamics. Part II

  • Yuhma Asano
  • Veselin G. Filev
  • Samuel Kováčik
  • Denjoe O’Connor
Open Access
Regular Article - Theoretical Physics

Abstract

We study the second derivative of the free energy with respect to the fundamental mass (the mass susceptibility) for the Berkooz-Douglas model as a function of temperature and at zero mass. The model is believed to be holographically dual to a D0/D4 intersection. We perform a lattice simulation of the system at finite temperature and find excellent agreement with predictions from the gravity dual.

Keywords

AdS-CFT Correspondence D-branes Lattice Quantum Field Theory M(atrix) Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  2. [2]
    N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    K.N. Anagnostopoulos, M. Hanada, J. Nishimura and S. Takeuchi, Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature, Phys. Rev. Lett. 100 (2008) 021601 [arXiv:0707.4454] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S. Catterall and T. Wiseman, Black hole thermodynamics from simulations of lattice Yang-Mills theory, Phys. Rev. D 78 (2008) 041502 [arXiv:0803.4273] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    M. Hanada, Y. Hyakutake, J. Nishimura and S. Takeuchi, Higher derivative corrections to black hole thermodynamics from supersymmetric matrix quantum mechanics, Phys. Rev. Lett. 102 (2009) 191602 [arXiv:0811.3102] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D. Kadoh and S. Kamata, Gauge/gravity duality and lattice simulations of one dimensional SYM with sixteen supercharges, arXiv:1503.08499 [INSPIRE].
  7. [7]
    V.G. Filev and D. O’Connor, The BFSS model on the lattice, JHEP 05 (2016) 167 [arXiv:1506.01366] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Catterall and T. Wiseman, Extracting black hole physics from the lattice, JHEP 04 (2010) 077 [arXiv:0909.4947] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  9. [9]
    M. Hanada, Y. Hyakutake, G. Ishiki and J. Nishimura, Holographic description of quantum black hole on a computer, Science 344 (2014) 882 [arXiv:1311.5607] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Berkooz and M.R. Douglas, Five-branes in M(atrix) theory, Phys. Lett. B 395 (1997) 196 [hep-th/9610236] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: A Conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  12. [12]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    V.G. Filev and D. O’Connor, A Computer Test of Holographic Flavour Dynamics, JHEP 05 (2016) 122 [arXiv:1512.02536] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    Y. Asano, V.G. Filev, S. Kováčik and D. O’Connor, The flavoured BFSS model at high temperature, JHEP 01 (2017) 113 [arXiv:1605.05597] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  17. [17]
    M. Van Raamsdonk, Open dielectric branes, JHEP 02 (2002) 001 [hep-th/0112081] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  18. [18]
    J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking and pions in nonsupersymmetric gauge/gravity duals, Phys. Rev. D 69 (2004) 066007 [hep-th/0306018] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  19. [19]
    C. Hoyos-Badajoz, K. Landsteiner and S. Montero, Holographic meson melting, JHEP 04 (2007) 031 [hep-th/0612169] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    I. Kirsch, Generalizations of the AdS/CFT correspondence, Fortsch. Phys. 52 (2004) 727 [hep-th/0406274] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, A Topology-changing phase transition and the dynamics of flavour, Phys. Rev. D 77 (2008) 066004 [hep-th/0605088] [INSPIRE].ADSGoogle Scholar
  22. [22]
    J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Mesons in Gauge/Gravity Duals — A Review, Eur. Phys. J. A 35 (2008) 81 [arXiv:0711.4467] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Y. Asano and D. O’Connor, Checking gauge/gravity duality with the BFSS model by different lattice discretisations, in preparation.Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.School of Theoretical PhysicsDublin Institute for Advanced StudiesDublin 4Ireland

Personalised recommendations