Advertisement

Searches for vector-like quarks at future colliders and implications for composite Higgs models with dark matter

  • Mikael Chala
  • Ramona Gröber
  • Michael Spannowsky
Open Access
Regular Article - Theoretical Physics

Abstract

Many composite Higgs models predict the existence of vector-like quarks with masses outside the reach of the LHC, e.g. mQ ≳ 2 TeV, in particular if these models contain a dark matter candidate. In such models the mass of the new resonances is bounded from above to satisfy the constraint from the observed relic density. We therefore develop new strategies to search for vector-like quarks at a future 100 TeV collider and evaluate what masses and interactions can be probed. We find that masses as large as ∼ 6.4 (∼9) TeV can be tested if the fermionic resonances decay into Standard Model (dark matter) particles. We also discuss the complementarity of dark matter searches, showing that most of the parameter space can be closed. On balance, this study motivates further the consideration of a higher-energy hadron collider for a next generation of facilities.

Keywords

Higgs Physics Technicolor and Composite Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Dimopoulos and J. Preskill, Massless composites with massive constituents, Nucl. Phys. B 199 (1982) 206 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].
  3. [3]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].
  4. [4]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  5. [5]
    M. Chala, Direct bounds on heavy toplike quarks with standard and exotic decays, Phys. Rev. D 96 (2017) 015028 [arXiv:1705.03013] [INSPIRE].ADSGoogle Scholar
  6. [6]
    ATLAS collaboration, J.P. Araque, Overview of the vector-like quark searches with the LHC data collected by the ATLAS detector, in Proceedings, 9th International Workshop on Top Quark Physics (TOP 2016), Olomouc Czech Republic, 19–23 September 2016 [arXiv:1611.09056] [INSPIRE].
  7. [7]
    ATLAS collaboration, Search for pair production of heavy vector-like quarks decaying to high-p T W bosons and b quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 10 (2017) 141 [arXiv:1707.03347] [INSPIRE].
  8. [8]
    ATLAS collaboration, Search for pair production of vector-like top quarks in events with one lepton, jets and missing transverse momentum in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, JHEP 08 (2017) 052 [arXiv:1705.10751] [INSPIRE].
  9. [9]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].
  10. [10]
    O. Matsedonskyi, G. Panico and A. Wulzer, Light top partners for a light composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Redi and A. Tesi, Implications of a light Higgs in composite models, JHEP 10 (2012) 166 [arXiv:1205.0232] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    D. Marzocca, M. Serone and J. Shu, General composite Higgs models, JHEP 08 (2012) 013 [arXiv:1205.0770] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Pomarol and F. Riva, The composite Higgs and light resonance connection, JHEP 08 (2012) 135 [arXiv:1205.6434] [INSPIRE].
  14. [14]
    G. Panico, M. Redi, A. Tesi and A. Wulzer, On the tuning and the mass of the composite Higgs, JHEP 03 (2013) 051 [arXiv:1210.7114] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Azatov, M. Salvarezza, M. Son and M. Spannowsky, Boosting top partner searches in composite Higgs models, Phys. Rev. D 89 (2014) 075001 [arXiv:1308.6601] [INSPIRE].ADSGoogle Scholar
  16. [16]
    N. Gutierrez Ortiz, J. Ferrando, D. Kar and M. Spannowsky, Reconstructing singly produced top partners in decays to Wb, Phys. Rev. D 90 (2014) 075009 [arXiv:1403.7490] [INSPIRE].ADSGoogle Scholar
  17. [17]
    O. Matsedonskyi, G. Panico and A. Wulzer, Top partners searches and composite Higgs models, JHEP 04 (2016) 003 [arXiv:1512.04356] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Frigerio, A. Pomarol, F. Riva and A. Urbano, Composite scalar dark matter, JHEP 07 (2012) 015 [arXiv:1204.2808] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    D. Marzocca and A. Urbano, Composite dark matter and LHC interplay, JHEP 07 (2014) 107 [arXiv:1404.7419] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    N. Fonseca, R. Zukanovich Funchal, A. Lessa and L. Lopez-Honorez, Dark matter constraints on composite Higgs models, JHEP 06 (2015) 154 [arXiv:1501.05957] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the minimal composite Higgs model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Chala, G. Nardini and I. Sobolev, Unified explanation for dark matter and electroweak baryogenesis with direct detection and gravitational wave signatures, Phys. Rev. D 94 (2016) 055006 [arXiv:1605.08663] [INSPIRE].ADSGoogle Scholar
  23. [23]
    R. Balkin, M. Ruhdorfer, E. Salvioni and A. Weiler, Charged composite scalar dark matter, JHEP 11 (2017) 094 [arXiv:1707.07685] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    M. Chala, hγγ excess and dark matter from composite Higgs models, JHEP 01 (2013) 122 [arXiv:1210.6208] [INSPIRE].
  25. [25]
    G. Ballesteros, A. Carmona and M. Chala, Exceptional composite dark matter, Eur. Phys. J. C 77 (2017) 468 [arXiv:1704.07388] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    B. Gripaios, M. Nardecchia and T. You, On the structure of anomalous composite Higgs models, Eur. Phys. J. C 77 (2017) 28 [arXiv:1605.09647] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  28. [28]
    M. Chala, G. Durieux, C. Grojean, L. de Lima and O. Matsedonskyi, Minimally extended SILH, JHEP 06 (2017) 088 [arXiv:1703.10624] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    B.W. Lee, C. Quigg and H.B. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].ADSGoogle Scholar
  30. [30]
    G. Panico and A. Wulzer, The composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) pp.1 [arXiv:1506.01961] [INSPIRE].
  31. [31]
    J. Serra, Beyond the minimal top partner decay, JHEP 09 (2015) 176 [arXiv:1506.05110] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Bruggisser, F. Riva and A. Urbano, Strongly interacting light dark matter, SciPost Phys. 3 (2017) 017 [arXiv:1607.02474] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    R. Balkin, G. Perez and A. Weiler, Little composite dark matter, Eur. Phys. J. C 78 (2018) 104 [arXiv:1707.09980] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
  35. [35]
    LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  36. [36]
    LUX and LZ collaborations, M. Szydagis, The present and future of searching for dark matter with LUX and LZ, PoS(ICHEP2016)220 [arXiv:1611.05525] [INSPIRE].
  37. [37]
    J.M. Alarcon, J. Martin Camalich and J.A. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term, Phys. Rev. D 85 (2012) 051503 [arXiv:1110.3797] [INSPIRE].ADSGoogle Scholar
  38. [38]
    J.M. Alarcon, L.S. Geng, J. Martin Camalich and J.A. Oller, The strangeness content of the nucleon from effective field theory and phenomenology, Phys. Lett. B 730 (2014) 342 [arXiv:1209.2870] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Duerr, P. Fileviez Pérez and J. Smirnov, Scalar dark matter: direct vs. indirect detection, JHEP 06 (2016) 152 [arXiv:1509.04282] [INSPIRE].
  40. [40]
    ATLAS collaboration, Search for production of vector-like quark pairs and of four top quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2015) 105 [arXiv:1505.04306] [INSPIRE].
  41. [41]
    ATLAS collaboration, Search for pair production of heavy vector-like quarks decaying to high-p T W bosons and b quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-102, CERN, Geneva Switzerland, (2016).
  42. [42]
    ATLAS collaboration, Search for new phenomena in tt final states with additional heavy-flavour jets in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-104, CERN, Geneva Switzerland, (2016).
  43. [43]
    ATLAS collaboration, Search for pair production of vector-like top quarks in events with one lepton and an invisibly decaying Z boson in \( \sqrt{s}=13 \) TeV pp collisions at the ATLAS detector, ATLAS-CONF-2017-015, CERN, Geneva Switzerland, (2017).
  44. [44]
    CMS collaboration, Search for direct top squark pair production in the fully hadronic final state in proton-proton collisions at \( \sqrt{s}=13 \) TeV corresponding to an integrated luminosity of 12.9 fb −1, CMS-PAS-SUS-16-029, CERN, Geneva Switzerland, (2016).
  45. [45]
    ATLAS collaboration, Search for pair and single production of new heavy quarks that decay to a Z boson and a third-generation quark in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 104 [arXiv:1409.5500] [INSPIRE].
  46. [46]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].
  48. [48]
    J. Bellm et al., HERWIG 7.1 release note, arXiv:1705.06919 [INSPIRE].
  49. [49]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  50. [50]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  51. [51]
    T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [arXiv:0808.3674] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    K. Rehermann and B. Tweedie, Efficient identification of boosted semileptonic top quarks at the LHC, JHEP 03 (2011) 059 [arXiv:1007.2221] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    T. Cohen, R.T. D’Agnolo, M. Hance, H.K. Lou and J.G. Wacker, Boosting stop searches with a 100 TeV proton collider, JHEP 11 (2014) 021 [arXiv:1406.4512] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    V. Sanz and J. Setford, Composite Higgses with seesaw EWSB, JHEP 12 (2015) 154 [arXiv:1508.06133] [INSPIRE].ADSGoogle Scholar
  57. [57]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: a tool for dark matter studies, Nuovo Cim. C 033N2 (2010) 111 [arXiv:1005.4133] [INSPIRE].
  58. [58]
    C. Englert et al., Precision measurements of Higgs couplings: implications for new physics scales, J. Phys. G 41 (2014) 113001 [arXiv:1403.7191] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    K. Fujii et al., Physics case for the International Linear Collider, arXiv:1506.05992 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute for Particle Physics Phenomenology, Department of PhysicsDurham UniversityDurhamU.K.

Personalised recommendations