Advertisement

Analysis of a dilaton EFT for lattice data

  • Thomas Appelquist
  • James Ingoldby
  • Maurizio Piai
Open Access
Regular Article - Theoretical Physics

Abstract

In a recent paper, we developed and applied a dilaton-based effective field theory (EFT) to the analysis of lattice-simulation data for a class of confining gauge theories with near-conformal infrared behavior. It was employed there at the classical level to the SU(3) gauge theory with eight Dirac fermions in the fundamental representation. Here, we explore the structure of the EFT further. We examine its application to lattice data (newly updated) for the SU(3) theory with eight Dirac fermions in the fundamental representation, and the SU(3) theory with two Dirac fermions in the sextet representation. In each case, we determine additional fit parameters and discuss uncertainties associated with extrapolation to zero fermion mass. We highlight universal features, study the EFT at the quantum loop level and discuss the importance of future lattice simulations.

Keywords

Lattice field theory simulation Phenomenological Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T. DeGrand, Lattice tests of beyond Standard Model dynamics, Rev. Mod. Phys. 88 (2016) 015001 [arXiv:1510.05018] [INSPIRE].
  2. [2]
    T. Appelquist et al., Strongly interacting dynamics and the search for new physics at the LHC, Phys. Rev. D 93 (2016) 114514 [arXiv:1601.04027] [INSPIRE].ADSGoogle Scholar
  3. [3]
    A.D. Gasbarro and G.T. Fleming, Examining the low energy dynamics of walking gauge theory, PoS(LATTICE2016)242 [arXiv:1702.00480] [INSPIRE].
  4. [4]
    LatKMI collaboration, Y. Aoki et al., Light composite scalar in eight-flavor QCD on the lattice, Phys. Rev. D 89 (2014) 111502 [arXiv:1403.5000] [INSPIRE].
  5. [5]
    LatKMI collaboration, Y. Aoki et al., Light flavor-singlet scalars and walking signals in N f = 8 QCD on the lattice, Phys. Rev. D 96 (2017) 014508 [arXiv:1610.07011] [INSPIRE].
  6. [6]
    Z. Fodor, K. Holland, J. Kuti, D. Nogradi, C. Schroeder and C.H. Wong, Can the nearly conformal sextet gauge model hide the Higgs impostor?, Phys. Lett. B 718 (2012) 657 [arXiv:1209.0391] [INSPIRE].
  7. [7]
    Z. Fodor, K. Holland, J. Kuti, S. Mondal, D. Nogradi and C.H. Wong, Toward the minimal realization of a light composite Higgs, PoS(LATTICE2014)244 [arXiv:1502.00028] [INSPIRE].
  8. [8]
    Z. Fodor, K. Holland, J. Kuti, S. Mondal, D. Nogradi and C.H. Wong, Status of a minimal composite Higgs theory, PoS(LATTICE 2015)219 [arXiv:1605.08750] [INSPIRE].
  9. [9]
    M. Golterman and Y. Shamir, Low-energy effective action for pions and a dilatonic meson, Phys. Rev. D 94 (2016) 054502 [arXiv:1603.04575] [INSPIRE].
  10. [10]
    M. Golterman and Y. Shamir, Effective action for pions and a dilatonic meson, PoS(LATTICE2016)205 [arXiv:1610.01752] [INSPIRE].
  11. [11]
    S. Matsuzaki and K. Yamawaki, Dilaton chiral perturbation theory: determining the mass and decay constant of the technidilaton on the lattice, Phys. Rev. Lett. 113 (2014) 082002 [arXiv:1311.3784] [INSPIRE].
  12. [12]
    A. Kasai, K.-I. Okumura and H. Suzuki, A dilaton-pion mass relation, arXiv:1609.02264 [INSPIRE].
  13. [13]
    M. Hansen, K. Langæble and F. Sannino, Extending chiral perturbation theory with an isosinglet scalar, Phys. Rev. D 95 (2017) 036005 [arXiv:1610.02904] [INSPIRE].
  14. [14]
    S. Coleman, Aspects of symmetry, Cambridge University Press, Cambridge U.K., (1988).Google Scholar
  15. [15]
    C.N. Leung, S.T. Love and W.A. Bardeen, Aspects of dynamical symmetry breaking in gauge field theories, Nucl. Phys. B 323 (1989) 493 [INSPIRE].ADSGoogle Scholar
  16. [16]
    T. Appelquist, J. Ingoldby and M. Piai, Dilaton EFT framework for lattice data, JHEP 07 (2017) 035 [arXiv:1702.04410] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    A.G. Cohen and H. Georgi, Walking beyond the rainbow, Nucl. Phys. B 314 (1989) 7 [INSPIRE].
  18. [18]
    T.A. Ryttov and R. Shrock, Higher-order scheme-independent series expansions of \( {\gamma}_{\overline{\psi}\psi, IR} \) and β IR in conformal field theories, Phys. Rev. D 95 (2017) 105004 [arXiv:1703.08558] [INSPIRE].
  19. [19]
    W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C.H. Wong, The twelve-flavor β-function and dilaton tests of the sextet scalar, in 35th International Symposium on Lattice Field Theory (Lattice 2017), Granada Spain, 18-24 June 2017 [arXiv:1712.08594] [INSPIRE].
  21. [21]
    J. Bijnens and J. Lu, Technicolor and other QCD-like theories at next-to-next-to-leading order, JHEP 11 (2009) 116 [arXiv:0910.5424] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  23. [23]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  24. [24]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, ATLAS-CONF-2015-044, CERN, Geneva Switzerland, (2015).
  25. [25]
    L. Del Debbio, B. Lucini, A. Patella, C. Pica and A. Rago, Conformal versus confining scenario in SU(2) with adjoint fermions, Phys. Rev. D 80 (2009) 074507 [arXiv:0907.3896] [INSPIRE].
  26. [26]
    L. Del Debbio and R. Zwicky, Hyperscaling relations in mass-deformed conformal gauge theories, Phys. Rev. D 82 (2010) 014502 [arXiv:1005.2371] [INSPIRE].
  27. [27]
    L. Del Debbio and R. Zwicky, Scaling relations for the entire spectrum in mass-deformed conformal gauge theories, Phys. Lett. B 700 (2011) 217 [arXiv:1009.2894] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Thomas Appelquist
    • 1
  • James Ingoldby
    • 1
  • Maurizio Piai
    • 2
  1. 1.Department of Physics, Sloane LaboratoryYale UniversityNew HavenU.S.A.
  2. 2.Department of Physics, College of ScienceSwansea UniversitySwanseaU.K.

Personalised recommendations