Advertisement

Resummation of non-global logarithms and the BFKL equation

  • Simon Caron-Huot
Open Access
Regular Article - Theoretical Physics

Abstract

We consider a ‘color density matrix’ in gauge theory. We argue that it systematically resums large logarithms originating from wide-angle soft radiation, sometimes referred to as non-global logarithms, to all logarithmic orders. We calculate its anomalous dimension at leading- and next-to-leading order. Combined with a conformal transformation known to relate this problem to shockwave scattering in the Regge limit, this is used to rederive the next-to-leading order Balitsky-Fadin-Kuraev-Lipatov equation (including its nonlinear generalization, the so-called Balitsky-JIMWLK equation), finding perfect agreement with the literature. Exponentiation of divergences to all logarithmic orders is demonstrated. The possibility of obtaining the evolution equation (and BFKL) to three-loop is discussed.

Keywords

Perturbative QCD Resummation Scattering Amplitudes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Sen, Asymptotic Behavior of the Wide Angle On-Shell Quark Scattering Amplitudes in Nonabelian Gauge Theories, Phys. Rev. D 28 (1983) 860 [INSPIRE].ADSGoogle Scholar
  2. [2]
    G.P. Korchemsky and A.V. Radyushkin, Infrared factorization, Wilson lines and the heavy quark limit, Phys. Lett. B 279 (1992) 359 [hep-ph/9203222] [INSPIRE].
  3. [3]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  4. [4]
    G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].
  5. [5]
    S.M. Aybat, L.J. Dixon and G.F. Sterman, The two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. Rev. D 74 (2006) 074004 [hep-ph/0607309] [INSPIRE].
  6. [6]
    I. Feige and M.D. Schwartz, Hard-Soft-Collinear Factorization to All Orders, Phys. Rev. D 90 (2014) 105020 [arXiv:1403.6472] [INSPIRE].ADSGoogle Scholar
  7. [7]
    T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  8. [8]
    T.D. Lee and M. Nauenberg, Degenerate Systems and Mass Singularities, Phys. Rev. 133 (1964) B1549 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].
  10. [10]
    A. Banfi, G. Marchesini and G. Smye, Away from jet energy flow, JHEP 08 (2002) 006 [hep-ph/0206076] [INSPIRE].
  11. [11]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].Google Scholar
  13. [13]
    Z. Nagy and D.E. Soper, Parton shower evolution with subleading color, JHEP 06 (2012) 044 [arXiv:1202.4496] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    H. Weigert, Nonglobal jet evolution at finite N(c), Nucl. Phys. B 685 (2004) 321 [hep-ph/0312050] [INSPIRE].
  15. [15]
    R. Kelley, M.D. Schwartz, R.M. Schabinger and H.X. Zhu, The two-loop hemisphere soft function, Phys. Rev. D 84 (2011) 045022 [arXiv:1105.3676] [INSPIRE].ADSGoogle Scholar
  16. [16]
    T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Effective Field Theory for Jet Processes, Phys. Rev. Lett. 116 (2016) 192001 [arXiv:1508.06645] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Factorization and Resummation for Jet Processes, JHEP 11 (2016) 019 [Erratum ibid. 05 (2017) 154] [arXiv:1605.02737] [INSPIRE].
  18. [18]
    Y. Hatta and T. Ueda, Resummation of non-global logarithms at finite N c, Nucl. Phys. B 874 (2013) 808 [arXiv:1304.6930] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    Y. Hatta, Relating e + e annihilation to high energy scattering at weak and strong coupling, JHEP 11 (2008) 057 [arXiv:0810.0889] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].
  21. [21]
    J. Jalilian-Marian, A. Kovner, L.D. McLerran and H. Weigert, The intrinsic glue distribution at very small x, Phys. Rev. D 55 (1997) 5414 [hep-ph/9606337] [INSPIRE].
  22. [22]
    J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].
  23. [23]
    E. Iancu, A. Leonidov and L.D. McLerran, The renormalization group equation for the color glass condensate, Phys. Lett. B 510 (2001) 133 [hep-ph/0102009] [INSPIRE].
  24. [24]
    L. Cornalba, M.S. Costa and J. Penedones, Eikonal Methods in AdS/CFT: BFKL Pomeron at Weak Coupling, JHEP 06 (2008) 048 [arXiv:0801.3002] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    L. Cornalba, M.S. Costa and J. Penedones, Deep Inelastic Scattering in Conformal QCD, JHEP 03 (2010) 133 [arXiv:0911.0043] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    A.J. Larkoski, I. Moult and D. Neill, Non-Global Logarithms, Factorization, and the Soft Substructure of Jets, JHEP 09 (2015) 143 [arXiv:1501.04596] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J.R. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global observables in QCD: Colour basis independent calculation, JHEP 09 (2008) 128 [arXiv:0808.1269] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G. Sterman, QCD at Short Distances: Jets and Factorization, Acta Phys. Polon. B 45 (2014) 2205 [arXiv:1412.5698] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys. B 570 (2000) 287 [hep-ph/9908523] [INSPIRE].
  30. [30]
    M.D. Schwartz and H.X. Zhu, Nonglobal logarithms at three loops, four loops, five loops, and beyond, Phys. Rev. D 90 (2014) 065004 [arXiv:1403.4949] [INSPIRE].ADSGoogle Scholar
  31. [31]
    H. Weigert, Unitarity at small Bjorken x, Nucl. Phys. A 703 (2002) 823 [hep-ph/0004044] [INSPIRE].
  32. [32]
    J.-P. Blaizot, E. Iancu and H. Weigert, Nonlinear gluon evolution in path integral form, Nucl. Phys. A 713 (2003) 441 [hep-ph/0206279] [INSPIRE].
  33. [33]
    K. Khelifa-Kerfa and Y. Delenda, Non-global logarithms at finite N c beyond leading order, JHEP 03 (2015) 094 [arXiv:1501.00475] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    S. Caron-Huot, When does the gluon reggeize?, JHEP 05 (2015) 093 [arXiv:1309.6521] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    E. Gardi, J.M. Smillie and C.D. White, The Non-Abelian Exponentiation theorem for multiple Wilson lines, JHEP 06 (2013) 088 [arXiv:1304.7040] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    Z. Bern, V. Del Duca and C.R. Schmidt, The infrared behavior of one loop gluon amplitudes at next-to-next-to-leading order, Phys. Lett. B 445 (1998) 168 [hep-ph/9810409] [INSPIRE].
  37. [37]
    Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, The infrared behavior of one loop QCD amplitudes at next-to-next-to leading order, Phys. Rev. D 60 (1999) 116001 [hep-ph/9903516] [INSPIRE].
  38. [38]
    S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys. B 591 (2000) 435 [hep-ph/0007142] [INSPIRE].
  39. [39]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  40. [40]
    L.V. Gribov, E.M. Levin and M.G. Ryskin, Semihard Processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    G. Altarelli, G. Curci, G. Martinelli and S. Petrarca, QCD Nonleading Corrections to Weak Decays as an Application of Regularization by Dimensional Reduction, Nucl. Phys. B 187 (1981) 461 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    R.P. Feynman, Quantum theory of gravitation, Acta Phys. Polon. 24 (1963) 697 [INSPIRE].MathSciNetGoogle Scholar
  44. [44]
    I. Bierenbaum, S. Catani, P. Draggiotis and G. Rodrigo, A Tree-Loop Duality Relation at Two Loops and Beyond, JHEP 10 (2010) 073 [arXiv:1007.0194] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    S. Caron-Huot, Loops and trees, JHEP 05 (2011) 080 [arXiv:1007.3224] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [arXiv:0901.0722] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Kovner, M. Lublinsky and Y. Mulian, Conformal symmetry of JIMWLK Evolution at NLO, JHEP 04 (2014) 030 [arXiv:1401.0374] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal Approximation in AdS/CFT: From Shock Waves to Four-Point Functions, JHEP 08 (2007) 019 [hep-th/0611122] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    I. Balitsky and G.A. Chirilli, NLO evolution of color dipoles in N = 4 SYM, Nucl. Phys. B 822 (2009) 45 [arXiv:0903.5326] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    I. Balitsky and G.A. Chirilli, Rapidity evolution of Wilson lines at the next-to-leading order, Phys. Rev. D 88 (2013) 111501 [arXiv:1309.7644] [INSPIRE].ADSGoogle Scholar
  53. [53]
    A. Kovner, M. Lublinsky and Y. Mulian, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner evolution at next to leading order, Phys. Rev. D 89 (2014) 061704 [arXiv:1310.0378] [INSPIRE].ADSGoogle Scholar
  54. [54]
    A. Kovner, M. Lublinsky and Y. Mulian, NLO JIMWLK evolution unabridged, JHEP 08 (2014) 114 [arXiv:1405.0418] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    I. Balitsky and G.A. Chirilli, Next-to-leading order evolution of color dipoles, Phys. Rev. D 77 (2008) 014019 [arXiv:0710.4330] [INSPIRE].ADSGoogle Scholar
  56. [56]
    A.V. Grabovsky, Connected contribution to the kernel of the evolution equation for 3-quark Wilson loop operator, JHEP 09 (2013) 141 [arXiv:1307.5414] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    I. Balitsky and A.V. Grabovsky, NLO evolution of 3-quark Wilson loop operator, JHEP 01 (2015) 009 [arXiv:1405.0443] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    V.S. Fadin and L.N. Lipatov, BFKL pomeron in the next-to-leading approximation, Phys. Lett. B 429 (1998) 127 [hep-ph/9802290] [INSPIRE].
  59. [59]
    M. Ciafaloni and G. Camici, Energy scale(s) and next-to-leading BFKL equation, Phys. Lett. B 430 (1998) 349 [hep-ph/9803389] [INSPIRE].
  60. [60]
    J. Bartels, V.S. Fadin, L.N. Lipatov and G.P. Vacca, NLO Corrections to the kernel of the BKP-equations, Nucl. Phys. B 867 (2013) 827 [arXiv:1210.0797] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  61. [61]
    A. Babansky and I. Balitsky, Scattering of color dipoles: From low to high-energies, Phys. Rev. D 67 (2003) 054026 [hep-ph/0212075] [INSPIRE].
  62. [62]
    I. Balitsky and G.A. Chirilli, High-energy amplitudes in N = 4 SYM in the next-to-leading order, Phys. Lett. B 687 (2010) 204 [arXiv:0911.5192] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    I.I. Balitsky and A.V. Belitsky, Nonlinear evolution in high density QCD, Nucl. Phys. B 629 (2002) 290 [hep-ph/0110158] [INSPIRE].
  64. [64]
    E. Gardi, J. Kuokkanen, K. Rummukainen and H. Weigert, Running coupling and power corrections in nonlinear evolution at the high-energy limit, Nucl. Phys. A 784 (2007) 282 [hep-ph/0609087] [INSPIRE].
  65. [65]
    H. Osborn, Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories, Nucl. Phys. B 363 (1991) 486 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    S. Weinzierl, Does one need the O(ϵ)- and O(ϵ 2)-terms of one-loop amplitudes in an NNLO calculation?, Phys. Rev. D 84 (2011) 074007 [arXiv:1107.5131] [INSPIRE].ADSGoogle Scholar
  67. [67]
    S. Moch, J.A.M. Vermaseren and A. Vogt, Three-loop results for quark and gluon form-factors, Phys. Lett. B 625 (2005) 245 [hep-ph/0508055] [INSPIRE].
  68. [68]
    C. Duhr and T. Gehrmann, The two-loop soft current in dimensional regularization, Phys. Lett. B 727 (2013) 452 [arXiv:1309.4393] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  69. [69]
    Y. Li and H.X. Zhu, Single soft gluon emission at two loops, JHEP 11 (2013) 080 [arXiv:1309.4391] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J.R. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global observables in QCD, JHEP 08 (2006) 059 [hep-ph/0604094] [INSPIRE].
  71. [71]
    J. Keates and M.H. Seymour, Super-leading logarithms in non-global observables in QCD: Fixed order calculation, JHEP 04 (2009) 040 [arXiv:0902.0477] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    S. Catani, D. de Florian and G. Rodrigo, Space-like (versus time-like) collinear limits in QCD: Is factorization violated?, JHEP 07 (2012) 026 [arXiv:1112.4405] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    J.R. Forshaw, M.H. Seymour and A. Siodmok, On the Breaking of Collinear Factorization in QCD, JHEP 11 (2012) 066 [arXiv:1206.6363] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, A general method for the resummation of event-shape distributions in e + e annihilation, JHEP 05 (2015) 102 [arXiv:1412.2126] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    H. Georgi, G. Kestin and A. Sajjad, Towards an Effective Field Theory on the Light-Shell, JHEP 03 (2016) 137 [arXiv:1401.7667] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    A. Strominger, Asymptotic Symmetries of Yang-Mills Theory, JHEP 07 (2014) 151 [arXiv:1308.0589] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. [77]
    L.N. Lipatov, Gauge invariant effective action for high-energy processes in QCD, Nucl. Phys. B 452 (1995) 369 [hep-ph/9502308] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Niels Bohr International Academy and Discovery CenterCopenhagenDenmark

Personalised recommendations