Advertisement

The case for future hadron colliders from BK(*)μ+μ decays

  • B. C. Allanach
  • Ben Gripaios
  • Tevong You
Open Access
Regular Article - Theoretical Physics

Abstract

Recent measurements in BK(*)μ+μ decays are somewhat discrepant with Standard Model predictions. They may be harbingers of new physics at an energy scale potentially accessible to direct discovery. We estimate the sensitivity of future hadron colliders to the possible new particles that may be responsible for the anomalies at tree-level: leptoquarks or Z′s. We consider luminosity upgrades for a 14 TeV LHC, a 33 TeV LHC, and a 100 TeV pp collider such as the FCC-hh. In the most conservative and pessimistic models, for narrow particles with perturbative couplings, Z′ masses up to 20 TeV and leptoquark masses up to 41 TeV may in principle explain the anomalies. Coverage of Z′ models is excellent: a 33 TeV 1 ab−1 LHC is expected to cover most of the parameter space up to 8 TeV in mass, whereas the 100 TeV FCC-hh with 10 ab−1 will cover all of it. A smaller portion of the leptoquark parameter space is covered by future colliders: for example, in a μ+μjj di-leptoquark search, a 100 TeV 10 ab−1 collider has a projected sensitivity up to leptoquark masses of 12 TeV (extendable to 21 TeV with a strong coupling for single leptoquark production).

Keywords

Beyond Standard Model Heavy Quark Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    LHCb collaboration, Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  2. [2]
    LHCb collaboration, Test of lepton universality with B 0K *0 + decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
  3. [3]
    G. Hiller and F. Krüger, More model-independent analysis of bs processes, Phys. Rev. D 69 (2004) 074020 [hep-ph/0310219] [INSPIRE].
  4. [4]
    BaBar collaboration, J.P. Lees et al., Evidence for an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].
  5. [5]
    BaBar collaboration, J.P. Lees et al., Measurement of an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) decays and implications for charged Higgs bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].
  6. [6]
    Belle collaboration, M. Huschle et al., Measurement of the branching ratio of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( \overline{B}\to {D}^{\left(\ast \right)}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].
  7. [7]
    Belle collaboration, Y. Sato et al., Measurement of the branching ratio of \( {\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( {\overline{B}}^0\to {D}^{\ast +}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with a semileptonic tagging method, Phys. Rev. D 94 (2016) 072007 [arXiv:1607.07923] [INSPIRE].
  8. [8]
    Belle collaboration, S. Hirose et al., Measurement of the τ lepton polarization and R(D *) in the decay \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \), Phys. Rev. Lett. 118 (2017) 211801 [arXiv:1612.00529] [INSPIRE].
  9. [9]
    LHCb collaboration, Measurement of the ratio of branching fractions \( \mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau}\right)/\mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu}\right) \), Phys. Rev. Lett. 115 (2015) 111803 [arXiv:1506.08614] [INSPIRE].
  10. [10]
    LHCb collaboration, Measurement of the ratio of the B 0D *− τ + ν τ and B 0D ∗− μ + ν μ branching fractions using three-prong τ-lepton decays, arXiv:1708.08856 [INSPIRE].
  11. [11]
    S. Descotes-Genon, J. Matias, M. Ramon and J. Virto, Implications from clean observables for the binned analysis of BK * μ + μ at large recoil, JHEP 01 (2013) 048 [arXiv:1207.2753] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    LHCb collaboration, Differential branching fractions and isospin asymmetries of BK (*) μ + μ decays, JHEP 06 (2014) 133 [arXiv:1403.8044] [INSPIRE].
  13. [13]
    LHCb collaboration, Measurement of form-factor-independent observables in the decay B 0K *0 μ + μ , Phys. Rev. Lett. 111 (2013) 191801 [arXiv:1308.1707] [INSPIRE].
  14. [14]
    LHCb collaboration, Angular analysis of the B 0K *0 μ + μ decay using 3 fb −1 of integrated luminosity, JHEP 02 (2016) 104 [arXiv:1512.04442] [INSPIRE].
  15. [15]
    S. Descotes-Genon, T. Hurth, J. Matias and J. Virto, Optimizing the basis of BK * ll observables in the full kinematic range, JHEP 05 (2013) 137 [arXiv:1303.5794] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, Global analysis of bsℓℓ anomalies, JHEP 06 (2016) 092 [arXiv:1510.04239] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Belle collaboration, A. Abdesselam et al., Angular analysis of B 0K *(892)0 + , arXiv:1604.04042 [INSPIRE].
  18. [18]
    LHCb collaboration, Angular analysis and differential branching fraction of the decay B s0 → ϕμ + μ , JHEP 09 (2015) 179 [arXiv:1506.08777] [INSPIRE].
  19. [19]
    S. Descotes-Genon, J. Matias and J. Virto, Understanding the BK * μ + μ anomaly, Phys. Rev. D 88 (2013) 074002 [arXiv:1307.5683] [INSPIRE].ADSGoogle Scholar
  20. [20]
    W. Altmannshofer and D.M. Straub, New physics in BK * μμ?, Eur. Phys. J. C 73 (2013) 2646 [arXiv:1308.1501] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    F. Beaujean, C. Bobeth and D. van Dyk, Comprehensive Bayesian analysis of rare (semi)leptonic and radiative B decays, Eur. Phys. J. C 74 (2014) 2897 [Erratum ibid. C 74 (2014) 3179] [arXiv:1310.2478] [INSPIRE].
  22. [22]
    T. Hurth and F. Mahmoudi, On the LHCb anomaly in BK * + , JHEP 04 (2014) 097 [arXiv:1312.5267] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto, Patterns of new physics in bsℓ + transitions in the light of recent data, JHEP 01 (2018) 093 [arXiv:1704.05340] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    W. Altmannshofer, P. Stangl and D.M. Straub, Interpreting hints for lepton flavor universality violation, Phys. Rev. D 96 (2017) 055008 [arXiv:1704.05435] [INSPIRE].ADSGoogle Scholar
  25. [25]
    G. Hiller and I. Nisandzic, R K and \( {R}_{K^{*}} \) beyond the standard model, Phys. Rev. D 96 (2017) 035003 [arXiv:1704.05444] [INSPIRE].ADSGoogle Scholar
  26. [26]
    L.-S. Geng et al., Towards the discovery of new physics with lepton-universality ratios of bsℓℓ decays, Phys. Rev. D 96 (2017) 093006 [arXiv:1704.05446] [INSPIRE].ADSGoogle Scholar
  27. [27]
    M. Ciuchini et al., On flavourful easter eggs for new physics hunger and lepton flavour universality violation, Eur. Phys. J. C 77 (2017) 688 [arXiv:1704.05447] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    G. D’Amico et al., Flavour anomalies after the \( {R}_{K^{*}} \) measurement, JHEP 09 (2017) 010 [arXiv:1704.05438] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Gauge-invariant implications of the LHCb measurements on lepton-flavor nonuniversality, Phys. Rev. D 96 (2017) 035026 [arXiv:1704.05672] [INSPIRE].ADSGoogle Scholar
  30. [30]
    L. Di Luzio and M. Nardecchia, What is the scale of new physics behind the B-flavour anomalies?, Eur. Phys. J. C 77 (2017) 536 [arXiv:1706.01868] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    B.W. Lee, C. Quigg and H.B. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].ADSGoogle Scholar
  32. [32]
    B.W. Lee, C. Quigg and H.B. Thacker, The strength of weak interactions at very high-energies and the Higgs boson mass, Phys. Rev. Lett. 38 (1977) 883 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Ellis, M. Fairbairn and P. Tunney, Anomaly-free models for flavour anomalies, arXiv:1705.03447 [INSPIRE].
  34. [34]
    A. Thamm, R. Torre and A. Wulzer, Future tests of Higgs compositeness: direct vs indirect, JHEP 07 (2015) 100 [arXiv:1502.01701] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    G. Salam and A. Weiler, Collider reach, http://collider-reach.web.cern.ch/collider-reach/ (2017).
  36. [36]
    N. Arkani-Hamed, T. Han, M. Mangano and L.-T. Wang, Physics opportunities of a 100 TeV proton-proton collider, Phys. Rept. 652 (2016) 1 [arXiv:1511.06495] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Baglio, A. Djouadi and J. Quevillon, Prospects for Higgs physics at energies up to 100 TeV, Rept. Prog. Phys. 79 (2016) 116201 [arXiv:1511.07853] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    T. Golling et al., Physics at a 100 TeV pp collider: beyond the standard model phenomena, CERN Yellow Report (2017) 441 [arXiv:1606.00947] [INSPIRE].
  39. [39]
    R. Contino et al., Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies, CERN Yellow Report (2017) 255 [arXiv:1606.09408] [INSPIRE].
  40. [40]
    M.L. Mangano et al., Physics at a 100 TeV pp collider: standard model processes, CERN Yellow Report (2017) 1 [arXiv:1607.01831] [INSPIRE].
  41. [41]
    J. Ellis and T. You, Sensitivities of prospective future e + e colliders to Decoupled New Physics, JHEP 03 (2016) 089 [arXiv:1510.04561] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J. Ellis, P. Roloff, V. Sanz and T. You, Dimension-6 operator analysis of the CLIC sensitivity to new physics, JHEP 05 (2017) 096 [arXiv:1701.04804] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    G. Durieux, C. Grojean, J. Gu and K. Wang, The leptonic future of the Higgs, JHEP 09 (2017) 014 [arXiv:1704.02333] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    B. Henning, X. Lu and H. Murayama, What do precision Higgs measurements buy us?, arXiv:1404.1058 [INSPIRE].
  45. [45]
    S.-F. Ge, H.-J. He and R.-Q. Xiao, Probing new physics scales from Higgs and electroweak observables at e + e Higgs factory, JHEP 10 (2016) 007 [arXiv:1603.03385] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    T. Barklow et al., Improved formalism for precision Higgs coupling fits, arXiv:1708.08912 [INSPIRE].
  47. [47]
    F. Sala and D.M. Straub, A new light particle in B decays?, Phys. Lett. B 774 (2017) 205 [arXiv:1704.06188] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    D. Ghosh, Explaining the R K and \( {R}_{K^{*}} \) anomalies, Eur. Phys. J. C 77 (2017) 694 [arXiv:1704.06240] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    K. Fuyuto, W.-S. Hou and M. Kohda, Z-induced FCNC decays of top, beauty and strange quarks, Phys. Rev. D 93 (2016) 054021 [arXiv:1512.09026] [INSPIRE].ADSGoogle Scholar
  50. [50]
    A. Datta, J. Liao and D. Marfatia, A light Zfor the R K puzzle and nonstandard neutrino interactions, Phys. Lett. B 768 (2017) 265 [arXiv:1702.01099] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    F. Bishara, U. Haisch and P.F. Monni, Regarding light resonance interpretations of the B decay anomalies, Phys. Rev. D 96 (2017) 055002 [arXiv:1705.03465] [INSPIRE].ADSGoogle Scholar
  52. [52]
    R. Alonso, B. Grinstein and J. Martin Camalich, SU(2) × U(1) gauge invariance and the shape of new physics in rare B decays, Phys. Rev. Lett. 113 (2014) 241802 [arXiv:1407.7044] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, DsixTools: the standard model effective field theory toolkit, Eur. Phys. J. C 77 (2017) 405 [arXiv:1704.04504] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    D. Ghosh, M. Nardecchia and S.A. Renner, Hint of lepton flavour non-universality in B meson decays, JHEP 12 (2014) 131 [arXiv:1408.4097] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    T. Hurth, F. Mahmoudi, D. Martinez Santos and S. Neshatpour, Lepton nonuniversality in exclusive bsℓℓ decays, Phys. Rev. D 96 (2017) 095034 [arXiv:1705.06274] [INSPIRE].ADSGoogle Scholar
  56. [56]
    B. Allanach, F.S. Queiroz, A. Strumia and S. Sun, Zmodels for the LHCb and g − 2 muon anomalies, Phys. Rev. D 93 (2016) 055045 [arXiv:1511.07447] [INSPIRE].ADSGoogle Scholar
  57. [57]
    R.S. Chivukula, J. Isaacson, K.A. Mohan, D. Sengupta and E.H. Simmons, R K anomalies and simplified limits on Zmodels at the LHC, Phys. Rev. D 96 (2017) 075012 [arXiv:1706.06575] [INSPIRE].ADSGoogle Scholar
  58. [58]
    D. Buttazzo, A. Greljo, G. Isidori and D. Marzocca, B-physics anomalies: a guide to combined explanations, JHEP 11 (2017) 044 [arXiv:1706.07808] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    I. Doršner, S. Fajfer, D.A. Faroughy and N. Košnik, The role of the S 3 GUT leptoquark in flavor universality and collider searches, arXiv:1706.07779 [INSPIRE].
  60. [60]
    A. Greljo and D. Marzocca, High-p T dilepton tails and flavor physics, Eur. Phys. J. C 77 (2017) 548 [arXiv:1704.09015] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    ATLAS collaboration, Search for high-mass new phenomena in the dilepton final state using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 761 (2016) 372 [arXiv:1607.03669] [INSPIRE].
  62. [62]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M. Lim, F. Maltoni, G. Ridolfi and M. Ubiali, Anatomy of double heavy-quark initiated processes, JHEP 09 (2016) 132 [arXiv:1605.09411] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M. Dalchenko et al., Bottom-quark fusion processes at the LHC for probing Zmodels and B-meson decay anomalies, arXiv:1707.07016 [INSPIRE].
  67. [67]
    CMS collaboration, Search for pair-production of first generation scalar leptoquarks in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-EXO-12-041 (2012).
  68. [68]
    CMS collaboration, Search for Pair-production of Second generation Leptoquarks in 8 TeV proton-proton collisions, CMS-PAS-EXO-12-042 (2012).
  69. [69]
    CMS collaboration, Search for pair production of first and second generation leptoquarks in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 93 (2016) 032004 [arXiv:1509.03744] [INSPIRE].
  70. [70]
    CMS collaboration, Search for single production of scalar leptoquarks in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 93 (2016) 032005 [arXiv:1509.03750] [INSPIRE].
  71. [71]
    ATLAS collaboration, Search for third generation scalar leptoquarks in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 06 (2013) 033 [arXiv:1303.0526] [INSPIRE].
  72. [72]
    ATLAS collaboration, Search for scalar leptoquarks in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS experiment, New J. Phys. 18 (2016) 093016 [arXiv:1605.06035] [INSPIRE].
  73. [73]
    ATLAS and CMS collaborations, Search for leptoquark-like signatures with the ATLAS and CMS detectors, Nucl. Part. Phys. Proc. 273-275 (2016) 638 [INSPIRE].
  74. [74]
    I. Doršner et al., Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept. 641 (2016) 1 [arXiv:1603.04993] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    B. Diaz, M. Schmaltz and Y.-M. Zhong, The leptoquark Hunter’s guide: Pair production, JHEP 10 (2017) 097 [arXiv:1706.05033] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, Pair production of scalar leptoquarks at the CERN LHC, Phys. Rev. D 71 (2005) 057503 [hep-ph/0411038] [INSPIRE].
  77. [77]
    J.L. Hewett, T.G. Rizzo, S. Pakvasa, H.E. Haber and A. Pomarol, Vector leptoquark production at hadron colliders, talk given at the Workshop on Physics at Current Accelerators and the Supercollider, June 2–5, Argonne, U.S.A. (1993), hep-ph/9310361 [INSPIRE].
  78. [78]
    T.G. Rizzo, Searches for scalar and vector leptoquarks at future hadron colliders, eConf C 960625 (1996) NEW151 [hep-ph/9609267] [INSPIRE].
  79. [79]
    J.L. Hewett and T.G. Rizzo, Much ado about leptoquarks: a comprehensive analysis, Phys. Rev. D 56 (1997) 5709 [hep-ph/9703337] [INSPIRE].
  80. [80]
    A. Belyaev, C. Leroy, R. Mehdiyev and A. Pukhov, Leptoquark single and pair production at LHC with CalcHEP/CompHEP in the complete model, JHEP 09 (2005) 005 [hep-ph/0502067] [INSPIRE].
  81. [81]
    J.L. Hewett and S. Pakvasa, Leptoquark production in hadron colliders, Phys. Rev. D 37 (1988) 3165 [INSPIRE].ADSGoogle Scholar
  82. [82]
    J. Albrecht et al., Future prospects for exploring present day anomalies in flavour physics measurements with Belle II and LHCb, arXiv:1709.10308 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.DAMTPUniversity of CambridgeCambridgeU.K.
  2. 2.Cavendish LaboratoryUniversity of CambridgeCambridgeU.K.

Personalised recommendations