Advertisement

Unattainable extended spacetime regions in conformal gravity

  • Hrishikesh Chakrabarty
  • Carlos A. Benavides-Gallego
  • Cosimo Bambi
  • Leonardo Modesto
Open Access
Regular Article - Theoretical Physics

Abstract

The Janis-Newman-Winicour metric is a solution of Einstein’s gravity minimally coupled to a real massless scalar field. The γ-metric is instead a vacuum solution of Einstein’s gravity. Both spacetimes have no horizon and possess a naked singularity at a finite value of the radial coordinate, where curvature invariants diverge and the spacetimes are geodetically incomplete. In this paper, we reconsider these solutions in the framework of conformal gravity and we show that it is possible to solve the spacetime singularities with a suitable choice of the conformal factor. Now curvature invariants remain finite over the whole spacetime. Massive particles never reach the previous singular surface and massless particles can never do it with a finite value of their affine parameter. Our results support the conjecture according to which conformal gravity can fix the singularity problem that plagues Einstein’s gravity.

Keywords

Classical Theories of Gravity Spacetime Singularities 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    C.M. Will, The confrontation between general relativity and experiment, Living Rev. Rel. 17 (2014) 4 [arXiv:1403.7377] [INSPIRE].CrossRefzbMATHGoogle Scholar
  2. [2]
    C. Bambi, Testing black hole candidates with electromagnetic radiation, Rev. Mod. Phys. 89 (2017) 025001 [arXiv:1509.03884] [INSPIRE].
  3. [3]
    F. Englert, C. Truffin and R. Gastmans, Conformal invariance in quantum gravity, Nucl. Phys. B 117 (1976) 407 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J.V. Narlikar and A.K. Kembhavi, Space-time singularities and conformal gravity, Lett. Nuovo Cim. 19 (1977) 517 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    G. ’t Hooft, A class of elementary particle models without any adjustable real parameters, Found. Phys. 41 (2011) 1829 [arXiv:1104.4543] [INSPIRE].
  6. [6]
    G. ’t Hooft, Quantum gravity without space-time singularities or horizons, Subnucl. Ser. 47 (2011) 251 [arXiv:0909.3426] [INSPIRE].
  7. [7]
    P.D. Mannheim, Making the case for conformal gravity, Found. Phys. 42 (2012) 388 [arXiv:1101.2186] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    P. Dominis Prester, Curing black hole singularities with local scale invariance, Adv. Math. Phys. 2016 (2016) 6095236 [arXiv:1309.1188] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Y.S. Myung and Y.-J. Park, Scale-invariant power spectra from a Weyl-invariant scalar-tensor theory, Eur. Phys. J. C 76 (2016) 79 [arXiv:1508.04188] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    C. Bambi, L. Modesto and L. Rachwal, Spacetime completeness of non-singular black holes in conformal gravity, JCAP 05 (2017) 003 [arXiv:1611.00865] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    C. Bambi, L. Modesto, S. Porey and L. Rachwał, Black hole evaporation in conformal gravity, JCAP 09 (2017) 033 [arXiv:1611.05582] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    C. Bambi, Z. Cao and L. Modesto, Testing conformal gravity with astrophysical black holes, Phys. Rev. D 95 (2017) 064006 [arXiv:1701.00226] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    B. Toshmatov, C. Bambi, B. Ahmedov, A. Abdujabbarov and Z. Stuchlík, Energy conditions of non-singular black hole spacetimes in conformal gravity, Eur. Phys. J. C 77 (2017) 542 [arXiv:1702.06855] [INSPIRE].
  14. [14]
    B. Toshmatov, C. Bambi, B. Ahmedov, Z. Stuchlík and J. Schee, Scalar perturbations of nonsingular nonrotating black holes in conformal gravity, Phys. Rev. D 96 (2017) 064028 [arXiv:1705.03654] [INSPIRE].
  15. [15]
    L. Modesto and L. Rachwal, Super-renormalizable and finite gravitational theories, Nucl. Phys. B 889 (2014) 228 [arXiv:1407.8036] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    L. Modesto and L. Rachwal, Finite conformal quantum gravity and nonsingular spacetimes, arXiv:1605.04173 [INSPIRE].
  17. [17]
    L. Modesto, Super-renormalizable quantum gravity, Phys. Rev. D 86 (2012) 044005 [arXiv:1107.2403] [INSPIRE].ADSGoogle Scholar
  18. [18]
    A.I. Janis, E.T. Newman and J. Winicour, Reality of the Schwarzschild singularity, Phys. Rev. Lett. 20 (1968) 878 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    D.M. Zipoy, Topology of some spheroidal metrics, J. Math. Phys. 7 (1966) 1137.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    B.H. Voorhees, Static axially symmetric gravitational fields, Phys. Rev. D 2 (1970) 2119 [INSPIRE].ADSGoogle Scholar
  21. [21]
    M. Wyman, Static spherically symmetric scalar fields in general relativity, Phys. Rev. D 24 (1981) 839 [INSPIRE].
  22. [22]
    K.S. Virbhadra, Janis-Newman-Winicour and Wyman solutions are the same, Int. J. Mod. Phys. A 12 (1997) 4831 [gr-qc/9701021] [INSPIRE].
  23. [23]
    B.W. Stewart, D. Papadopoulos, L. Witten, R. Berezdivin and L. Herrera, An interior solution for the gamma metric, Gen. Rel. Grav. 14 (1982) 97.ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    Riemannian Geometry & Tensor Calculus @ Mathematica webpage, http://www.inp.demokritos.gr/~sbonano/RGTC/.

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Hrishikesh Chakrabarty
    • 1
  • Carlos A. Benavides-Gallego
    • 1
  • Cosimo Bambi
    • 1
    • 2
  • Leonardo Modesto
    • 3
  1. 1.Center for Field Theory and Particle Physics and Department of PhysicsFudan UniversityShanghaiChina
  2. 2.Theoretical AstrophysicsEberhard-Karls Universität TübingenTübingenGermany
  3. 3.Department of PhysicsSouthern University of Science and Technology (SUSTech)ShenzhenChina

Personalised recommendations