Advertisement

Resolution effects in the hybrid strong/weak coupling model

  • Zachary Hulcher
  • Daniel Pablos
  • Krishna Rajagopal
Open Access
Regular Article - Theoretical Physics

Abstract

Within the context of a hybrid strong/weak coupling model of jet quenching, we study the consequences of the fact that the plasma produced in a heavy ion collision cannot resolve the substructure of a collimated parton shower propagating through it with arbitrarily fine spatial resolution. We introduce a screening length parameter, Lres, proportional to the inverse of the local temperature in the plasma, estimating a range for the value of the proportionality constant via comparing weakly coupled QCD calculations and holographic calculations appropriate in strongly coupled plasma. We then modify the hybrid model so that when a parton in a jet shower splits, its two offspring are initially treated as unresolved, and are only treated as two separate partons losing energy independently after they are separated by a distance Lres. This modification delays the quenching of partons with intermediate energy, resulting in the survival of more hadrons in the final state with pT in the several GeV range. We analyze the consequences of different choices for the value of the resolution length, Lres, and demonstrate that introducing a nonzero Lres results in modifications to the jet shapes and jet fragmentations functions, as it makes it more probable for particles carrying a small fraction of the jet energy at larger angles from the jet axis to survive their passage through the quark-gluon plasma. These effects are, however, small in magnitude, something that we confirm via checking for effects on missing-pT observables.

Keywords

Heavy Ion Phenomenology Jets 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    PHENIX collaboration, K. Adcox et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [INSPIRE].
  2. [2]
    BRAHMS collaboration, I. Arsene et al., Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment, Nucl. Phys. A 757 (2005) 1 [nucl-ex/0410020] [INSPIRE].
  3. [3]
    B.B. Back et al., The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A 757 (2005) 28 [nucl-ex/0410022] [INSPIRE].
  4. [4]
    STAR collaboration, J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].
  5. [5]
    ALICE collaboration, Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett. 105 (2010) 252302 [arXiv:1011.3914] [INSPIRE].
  6. [6]
    ATLAS collaboration, Measurement of the pseudorapidity and transverse momentum dependence of the elliptic flow of charged particles in lead-lead collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV with the ATLAS detector, Phys. Lett. B 707 (2012) 330 [arXiv:1108.6018] [INSPIRE].
  7. [7]
    CMS collaboration, Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at \( {\sqrt{s}}_{N\;N}=2.76 \) TeV, Phys. Rev. C 87 (2013) 014902 [arXiv:1204.1409] [INSPIRE].
  8. [8]
    P. Huovinen, P.F. Kolb, U.W. Heinz, P.V. Ruuskanen and S.A. Voloshin, Radial and elliptic flow at RHIC: further predictions, Phys. Lett. B 503 (2001) 58 [hep-ph/0101136] [INSPIRE].
  9. [9]
    D. Teaney, J. Lauret and E.V. Shuryak, A hydrodynamic description of heavy ion collisions at the SPS and RHIC, nucl-th/0110037 [INSPIRE].
  10. [10]
    T. Hirano, U.W. Heinz, D. Kharzeev, R. Lacey and Y. Nara, Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy-ion collisions, Phys. Lett. B 636 (2006) 299 [nucl-th/0511046] [INSPIRE].
  11. [11]
    P. Romatschke and U. Romatschke, Viscosity information from relativistic nuclear collisions: how perfect is the fluid observed at RHIC?, Phys. Rev. Lett. 99 (2007) 172301 [arXiv:0706.1522] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Luzum and P. Romatschke, Conformal relativistic viscous hydrodynamics: applications to RHIC results at \( \sqrt{s_{N\;N}}=200 \) GeV, Phys. Rev. C 78 (2008) 034915 [Erratum ibid. C 79 (2009) 039903] [arXiv:0804.4015] [INSPIRE].
  13. [13]
    B. Schenke, S. Jeon and C. Gale, Elliptic and triangular flow in event-by-event (3 + 1)D viscous hydrodynamics, Phys. Rev. Lett. 106 (2011) 042301 [arXiv:1009.3244] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T. Hirano, P. Huovinen and Y. Nara, Elliptic flow in Pb+Pb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV: hybrid model assessment of the first data, Phys. Rev. C 84 (2011) 011901 [arXiv:1012.3955] [INSPIRE].
  15. [15]
    C. Gale, S. Jeon, B. Schenke, P. Tribedy and R. Venugopalan, Event-by-event anisotropic flow in heavy-ion collisions from combined Yang-Mills and viscous fluid dynamics, Phys. Rev. Lett. 110 (2013) 012302 [arXiv:1209.6330] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz, The iEBE-VISHNU code package for relativistic heavy-ion collisions, Comput. Phys. Commun. 199 (2016) 61 [arXiv:1409.8164] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    C. Shen, J.-F. Paquet, U. Heinz and C. Gale, Photon emission from a momentum anisotropic quark-gluon plasma, Phys. Rev. C 91 (2015) 014908 [arXiv:1410.3404] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J.E. Bernhard, J.S. Moreland, S.A. Bass, J. Liu and U. Heinz, Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium, Phys. Rev. C 94 (2016) 024907 [arXiv:1605.03954] [INSPIRE].ADSGoogle Scholar
  19. [19]
    G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev. Lett. 93 (2004) 090602 [hep-th/0311175] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    ATLAS collaboration, Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at \( \sqrt{s_{N\;N}}=2.77 \) TeV with the ATLAS detector at the LHC, Phys. Rev. Lett. 105 (2010) 252303 [arXiv:1011.6182] [INSPIRE].
  23. [23]
    CMS collaboration, Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV, Phys. Rev. C 84 (2011) 024906 [arXiv:1102.1957] [INSPIRE].
  24. [24]
    CMS collaboration, Jet momentum dependence of jet quenching in PbPb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV, Phys. Lett. B 712 (2012) 176 [arXiv:1202.5022] [INSPIRE].
  25. [25]
    CMS collaboration, Studies of jet quenching using isolated-photon+jet correlations in PbPb and pp collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV, Phys. Lett. B 718 (2013) 773 [arXiv:1205.0206] [INSPIRE].
  26. [26]
    CMS collaboration, Measurement of jet fragmentation into charged particles in pp and PbPb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV, JHEP 10 (2012) 087 [arXiv:1205.5872] [INSPIRE].
  27. [27]
    ATLAS collaboration, Measurement of the jet radius and transverse momentum dependence of inclusive jet suppression in lead-lead collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV with the ATLAS detector, Phys. Lett. B 719 (2013) 220 [arXiv:1208.1967] [INSPIRE].
  28. [28]
    CMS collaboration, Nuclear modification factor of high transverse momentum jets in PbPb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV, CMS-PAS-HIN-12-004, CERN, Geneva Switzerland, (2012).
  29. [29]
    ATLAS collaboration, Measurement of the azimuthal angle dependence of inclusive jet yields in Pb+Pb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV with the ATLAS detector, Phys. Rev. Lett. 111 (2013) 152301 [arXiv:1306.6469] [INSPIRE].
  30. [30]
    CMS collaboration, Modification of jet shapes in PbPb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV, Phys. Lett. B 730 (2014) 243 [arXiv:1310.0878] [INSPIRE].
  31. [31]
    ALICE collaboration, Measurement of charged jet suppression in Pb-Pb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV, JHEP 03 (2014) 013 [arXiv:1311.0633] [INSPIRE].
  32. [32]
    CMS collaboration, Evidence of b-jet quenching in PbPb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV, Phys. Rev. Lett. 113 (2014) 132301 [arXiv:1312.4198] [INSPIRE].
  33. [33]
    CMS collaboration, Measurement of jet fragmentation in PbPb and pp collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV, Phys. Rev. C 90 (2014) 024908 [arXiv:1406.0932] [INSPIRE].
  34. [34]
    ATLAS collaboration, Measurement of inclusive jet charged-particle fragmentation functions in Pb+Pb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV with the ATLAS detector, Phys. Lett. B 739 (2014) 320 [arXiv:1406.2979] [INSPIRE].
  35. [35]
    ATLAS collaboration, Measurements of the nuclear modification factor for jets in Pb+Pb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV with the ATLAS detector, Phys. Rev. Lett. 114 (2015) 072302 [arXiv:1411.2357] [INSPIRE].
  36. [36]
    ALICE collaboration, Measurement of jet suppression in central Pb-Pb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV, Phys. Lett. B 746 (2015) 1 [arXiv:1502.01689] [INSPIRE].
  37. [37]
    ALICE collaboration, Measurement of jet quenching with semi-inclusive hadron-jet distributions in central Pb-Pb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV, JHEP 09 (2015) 170 [arXiv:1506.03984] [INSPIRE].
  38. [38]
    ATLAS collaboration, Measurement of the production of neighbouring jets in lead-lead collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV with the ATLAS detector, Phys. Lett. B 751 (2015) 376 [arXiv:1506.08656] [INSPIRE].
  39. [39]
    CMS collaboration, Measurement of transverse momentum relative to dijet systems in PbPb and pp collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV, JHEP 01 (2016) 006 [arXiv:1509.09029] [INSPIRE].
  40. [40]
    CMS collaboration, Correlations between jets and charged particles in PbPb and pp collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV, JHEP 02 (2016) 156 [arXiv:1601.00079] [INSPIRE].
  41. [41]
    CMS collaboration, Study of isolated-photon + jet correlations in PbPb and pp collisions at \( \sqrt{s_{N\;N}}=5.02 \) TeV, CMS-PAS-HIN-16-002, CERN, Geneva Switzerland, (2016).
  42. [42]
    CMS collaboration, Decomposing transverse momentum balance contributions for quenched jets in PbPb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV, JHEP 11 (2016) 055 [arXiv:1609.02466] [INSPIRE].
  43. [43]
    CMS collaboration, Measurement of inclusive jet cross sections in pp and PbPb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV, Phys. Rev. C 96 (2017) 015202 [arXiv:1609.05383] [INSPIRE].
  44. [44]
    ATLAS collaboration, Measurement of jet fragmentation in Pb+Pb and pp collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV with the ATLAS detector at the LHC, Eur. Phys. J. C 77 (2017) 379 [arXiv:1702.00674] [INSPIRE].
  45. [45]
    ALICE collaboration, First measurement of jet mass in Pb-Pb and p-Pb collisions at the LHC, Phys. Lett. B 776 (2018) 249 [arXiv:1702.00804] [INSPIRE].
  46. [46]
    CMS collaboration, Study of jet quenching with Z + jet correlations in Pb-Pb and pp collisions at \( \sqrt{s_{N\;N}}=5.02 \) TeV, Phys. Rev. Lett. 119 (2017) 082301 [arXiv:1702.01060] [INSPIRE].
  47. [47]
    ATLAS collaboration, Measurement of jet p T correlations in Pb+Pb and pp collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV with the ATLAS detector, Phys. Lett. B 774 (2017) 379 [arXiv:1706.09363] [INSPIRE].
  48. [48]
    PHENIX collaboration, K. Adcox et al., Suppression of hadrons with large transverse momentum in central Au+Au collisions at \( \sqrt{s_{N\;N}}=130 \) GeV, Phys. Rev. Lett. 88 (2002) 022301 [nucl-ex/0109003] [INSPIRE].
  49. [49]
    STAR collaboration, C. Adler et al., Centrality dependence of high p T hadron suppression in Au+Au collisions at \( {\sqrt{s}}_{N\;N}=130 \) GeV, Phys. Rev. Lett. 89 (2002) 202301 [nucl-ex/0206011] [INSPIRE].
  50. [50]
    STAR collaboration, C. Adler et al., Disappearance of back-to-back high p T hadron correlations in central Au+Au collisions at \( \sqrt{s_{N\;N}}=200 \) GeV, Phys. Rev. Lett. 90 (2003) 082302 [nucl-ex/0210033] [INSPIRE].
  51. [51]
    STAR collaboration, M. Ploskon, Inclusive cross section and correlations of fully reconstructed jets in \( \sqrt{s_{N\;N}}=200 \) GeV Au+Au and p+p collisions, Nucl. Phys. A 830 (2009) 255C [arXiv:0908.1799] [INSPIRE].
  52. [52]
    PHENIX collaboration, D.V. Perepelitsa, Reconstructed jet results in p+p, d+Au and Cu+Cu collisions at 200 GeV from PHENIX, Nucl. Phys. A 910-911 (2013) 425.Google Scholar
  53. [53]
    STAR collaboration, L. Adamczyk et al., Jet-hadron correlations in \( \sqrt{s_{N\;N}}=200 \) GeV p+p and central Au+Au collisions, Phys. Rev. Lett. 112 (2014) 122301 [arXiv:1302.6184] [INSPIRE].
  54. [54]
    STAR collaboration, P.M. Jacobs and A. Schmah, Measurements of jet quenching with semi-inclusive charged jet distributions in Au+Au collisions at \( \sqrt{s_{N\;N}}=200 \) GeV, Nucl. Phys. A 956 (2016) 641 [arXiv:1512.08784] [INSPIRE].
  55. [55]
    STAR collaboration, L. Adamczyk et al., Dijet imbalance measurements in Au+Au and pp collisions at \( \sqrt{s_{N\;N}}=200 \) GeV at STAR, Phys. Rev. Lett. 119 (2017) 062301 [arXiv:1609.03878] [INSPIRE].
  56. [56]
    STAR collaboration, L. Adamczyk et al., Measurements of jet quenching with semi-inclusive hadron+jet distributions in Au+Au collisions at \( \sqrt{s_{N\;N}}=200 \) GeV, Phys. Rev. C 96 (2017) 024905 [arXiv:1702.01108] [INSPIRE].
  57. [57]
    A. Adare et al., An upgrade proposal from the PHENIX collaboration, arXiv:1501.06197 [INSPIRE].
  58. [58]
    P. Jacobs and X.-N. Wang, Matter in extremis: ultrarelativistic nuclear collisions at RHIC, Prog. Part. Nucl. Phys. 54 (2005) 443 [hep-ph/0405125] [INSPIRE].
  59. [59]
    J. Casalderrey-Solana and C.A. Salgado, Introductory lectures on jet quenching in heavy ion collisions, Acta Phys. Polon. B 38 (2007) 3731 [arXiv:0712.3443] [INSPIRE].ADSGoogle Scholar
  60. [60]
    A. Majumder and M. Van Leeuwen, The theory and phenomenology of perturbative QCD based jet quenching, Prog. Part. Nucl. Phys. 66 (2011) 41 [arXiv:1002.2206] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    Y. Mehtar-Tani, J.G. Milhano and K. Tywoniuk, Jet physics in heavy-ion collisions, Int. J. Mod. Phys. A 28 (2013) 1340013 [arXiv:1302.2579] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    J. Ghiglieri and D. Teaney, Parton energy loss and momentum broadening at NLO in high temperature QCD plasmas, Int. J. Mod. Phys. E 24 (2015) 1530013 [arXiv:1502.03730] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  63. [63]
    J.-P. Blaizot and Y. Mehtar-Tani, Jet structure in heavy ion collisions, Int. J. Mod. Phys. E 24 (2015) 1530012 [arXiv:1503.05958] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  64. [64]
    G.-Y. Qin and X.-N. Wang, Jet quenching in high-energy heavy-ion collisions, Int. J. Mod. Phys. E 24 (2015) 1530014 [arXiv:1511.00790] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    K. Zapp, J. Stachel and U.A. Wiedemann, A local Monte Carlo implementation of the non-Abelian Landau-Pomerantschuk-Migdal effect, Phys. Rev. Lett. 103 (2009) 152302 [arXiv:0812.3888] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    K. Zapp, G. Ingelman, J. Rathsman, J. Stachel and U.A. Wiedemann, A Monte Carlo model for ‘jet quenching’, Eur. Phys. J. C 60 (2009) 617 [arXiv:0804.3568] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    N. Armesto, L. Cunqueiro and C.A. Salgado, Q-PYTHIA: a medium-modified implementation of final state radiation, Eur. Phys. J. C 63 (2009) 679 [arXiv:0907.1014] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    B. Schenke, C. Gale and S. Jeon, MARTINI: an event generator for relativistic heavy-ion collisions, Phys. Rev. C 80 (2009) 054913 [arXiv:0909.2037] [INSPIRE].ADSGoogle Scholar
  69. [69]
    I.P. Lokhtin, A.V. Belyaev and A.M. Snigirev, Jet quenching pattern at LHC in PYQUEN model, Eur. Phys. J. C 71 (2011) 1650 [arXiv:1103.1853] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    K.C. Zapp, F. Krauss and U.A. Wiedemann, A perturbative framework for jet quenching, JHEP 03 (2013) 080 [arXiv:1212.1599] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    K.C. Zapp, JEWEL 2.0.0: directions for use, Eur. Phys. J. C 74 (2014) 2762 [arXiv:1311.0048] [INSPIRE].
  72. [72]
    K.C. Zapp, Geometrical aspects of jet quenching in JEWEL, Phys. Lett. B 735 (2014) 157 [arXiv:1312.5536] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, Cambridge University Press, Cambridge U.K., (2014) [arXiv:1101.0618] [INSPIRE].
  75. [75]
    O. DeWolfe, S.S. Gubser, C. Rosen and D. Teaney, Heavy ions and string theory, Prog. Part. Nucl. Phys. 75 (2014) 86 [arXiv:1304.7794] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    P.M. Chesler and W. van der Schee, Early thermalization, hydrodynamics and energy loss in AdS/CFT, Int. J. Mod. Phys. E 24 (2015) 1530011 [arXiv:1501.04952] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  77. [77]
    C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  78. [78]
    H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [INSPIRE].
  79. [79]
    J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled N = 4 Yang-Mills, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199] [INSPIRE].
  80. [80]
    S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [INSPIRE].ADSMathSciNetGoogle Scholar
  81. [81]
    H. Liu, K. Rajagopal and U.A. Wiedemann, An AdS/CFT calculation of screening in a hot wind, Phys. Rev. Lett. 98 (2007) 182301 [hep-ph/0607062] [INSPIRE].
  82. [82]
    M. Chernicoff, J.A. Garcia and A. Guijosa, The energy of a moving quark-antiquark pair in an N = 4 SYM plasma, JHEP 09 (2006) 068 [hep-th/0607089] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  83. [83]
    H. Liu, K. Rajagopal and U.A. Wiedemann, Wilson loops in heavy ion collisions and their calculation in AdS/CFT, JHEP 03 (2007) 066 [hep-ph/0612168] [INSPIRE].
  84. [84]
    S.S. Gubser, Momentum fluctuations of heavy quarks in the gauge-string duality, Nucl. Phys. B 790 (2008) 175 [hep-th/0612143] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  85. [85]
    J. Casalderrey-Solana and D. Teaney, Transverse momentum broadening of a fast quark in a N = 4 Yang-Mills plasma, JHEP 04 (2007) 039 [hep-th/0701123] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  86. [86]
    P.M. Chesler and L.G. Yaffe, The wake of a quark moving through a strongly-coupled plasma, Phys. Rev. Lett. 99 (2007) 152001 [arXiv:0706.0368] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    S.S. Gubser, S.S. Pufu and A. Yarom, Sonic booms and diffusion wakes generated by a heavy quark in thermal AdS/CFT, Phys. Rev. Lett. 100 (2008) 012301 [arXiv:0706.4307] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    P.M. Chesler and L.G. Yaffe, The stress-energy tensor of a quark moving through a strongly-coupled N = 4 supersymmetric Yang-Mills plasma: comparing hydrodynamics and AdS/CFT, Phys. Rev. D 78 (2008) 045013 [arXiv:0712.0050] [INSPIRE].ADSGoogle Scholar
  89. [89]
    D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    S.S. Gubser, D.R. Gulotta, S.S. Pufu and F.D. Rocha, Gluon energy loss in the gauge-string duality, JHEP 10 (2008) 052 [arXiv:0803.1470] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  91. [91]
    Y. Hatta, E. Iancu and A.H. Mueller, Jet evolution in the N = 4 SYM plasma at strong coupling, JHEP 05 (2008) 037 [arXiv:0803.2481] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    F. Dominguez, C. Marquet, A.H. Mueller, B. Wu and B.-W. Xiao, Comparing energy loss and p-perpendicular-broadening in perturbative QCD with strong coupling N = 4 SYM theory, Nucl. Phys. A 811 (2008) 197 [arXiv:0803.3234] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    P.M. Chesler, K. Jensen and A. Karch, Jets in strongly-coupled N = 4 super Yang-Mills theory, Phys. Rev. D 79 (2009) 025021 [arXiv:0804.3110] [INSPIRE].ADSGoogle Scholar
  94. [94]
    P.M. Chesler, K. Jensen, A. Karch and L.G. Yaffe, Light quark energy loss in strongly-coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. D 79 (2009) 125015 [arXiv:0810.1985] [INSPIRE].ADSGoogle Scholar
  95. [95]
    F. D’Eramo, H. Liu and K. Rajagopal, Transverse momentum broadening and the jet quenching parameter, redux, Phys. Rev. D 84 (2011) 065015 [arXiv:1006.1367] [INSPIRE].ADSGoogle Scholar
  96. [96]
    P. Arnold and D. Vaman, Jet quenching in hot strongly coupled gauge theories revisited: 3-point correlators with gauge-gravity duality, JHEP 10 (2010) 099 [arXiv:1008.4023] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  97. [97]
    P. Arnold and D. Vaman, Jet quenching in hot strongly coupled gauge theories simplified, JHEP 04 (2011) 027 [arXiv:1101.2689] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    P. Arnold and D. Vaman, Some new results for ‘jet’ stopping in AdS/CFT: long version, J. Phys. G 38 (2011) 124175 [arXiv:1106.1680] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    M. Chernicoff, J.A. Garcia, A. Guijosa and J.F. Pedraza, Holographic lessons for quark dynamics, J. Phys. G 39 (2012) 054002 [arXiv:1111.0872] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    P.M. Chesler, Y.-Y. Ho and K. Rajagopal, Shining a gluon beam through quark-gluon plasma, Phys. Rev. D 85 (2012) 126006 [arXiv:1111.1691] [INSPIRE].ADSGoogle Scholar
  101. [101]
    P. Arnold, P. Szepietowski and D. Vaman, Coupling dependence of jet quenching in hot strongly-coupled gauge theories, JHEP 07 (2012) 024 [arXiv:1203.6658] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    P. Arnold, P. Szepietowski, D. Vaman and G. Wong, Tidal stretching of gravitons into classical strings: application to jet quenching with AdS/CFT, JHEP 02 (2013) 130 [arXiv:1212.3321] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    P.M. Chesler, M. Lekaveckas and K. Rajagopal, Heavy quark energy loss far from equilibrium in a strongly coupled collision, JHEP 10 (2013) 013 [arXiv:1306.0564] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  104. [104]
    A. Ficnar and S.S. Gubser, Finite momentum at string endpoints, Phys. Rev. D 89 (2014) 026002 [arXiv:1306.6648] [INSPIRE].ADSGoogle Scholar
  105. [105]
    A. Ficnar, S.S. Gubser and M. Gyulassy, Shooting string holography of jet quenching at RHIC and LHC, Phys. Lett. B 738 (2014) 464 [arXiv:1311.6160] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    P.M. Chesler and K. Rajagopal, Jet quenching in strongly coupled plasma, Phys. Rev. D 90 (2014) 025033 [arXiv:1402.6756] [INSPIRE].ADSGoogle Scholar
  107. [107]
    R. Rougemont, A. Ficnar, S. Finazzo and J. Noronha, Energy loss, equilibration and thermodynamics of a baryon rich strongly coupled quark-gluon plasma, JHEP 04 (2016) 102 [arXiv:1507.06556] [INSPIRE].ADSGoogle Scholar
  108. [108]
    P.M. Chesler and K. Rajagopal, On the evolution of jet energy and opening angle in strongly coupled plasma, JHEP 05 (2016) 098 [arXiv:1511.07567] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    J. Casalderrey-Solana and A. Ficnar, Holographic three-jet events in strongly coupled N = 4 Yang-Mills plasma, arXiv:1512.00371 [INSPIRE].
  110. [110]
    K. Rajagopal, A.V. Sadofyev and W. van der Schee, Evolution of the jet opening angle distribution in holographic plasma, Phys. Rev. Lett. 116 (2016) 211603 [arXiv:1602.04187] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    J. Brewer, K. Rajagopal, A. Sadofyev and W. van der Schee, Holographic jet shapes and their evolution in strongly coupled plasma, Nucl. Phys. A 967 (2017) 508 [arXiv:1704.05455] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    J. Casalderrey-Solana, D.C. Gulhan, J.G. Milhano, D. Pablos and K. Rajagopal, A hybrid strong/weak coupling approach to jet quenching, JHEP 10 (2014) 019 [Erratum ibid. 09 (2015) 175] [arXiv:1405.3864] [INSPIRE].
  113. [113]
    J. Casalderrey-Solana, D.C. Gulhan, J.G. Milhano, D. Pablos and K. Rajagopal, Predictions for boson-jet observables and fragmentation function ratios from a hybrid strong/weak coupling model for jet quenching, JHEP 03 (2016) 053 [arXiv:1508.00815] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    J. Casalderrey-Solana, D. Gulhan, G. Milhano, D. Pablos and K. Rajagopal, Angular structure of jet quenching within a hybrid strong/weak coupling model, JHEP 03 (2017) 135 [arXiv:1609.05842] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, Anti-angular ordering of gluon radiation in QCD media, Phys. Rev. Lett. 106 (2011) 122002 [arXiv:1009.2965] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, Jets in QCD media: from color coherence to decoherence, Phys. Lett. B 707 (2012) 156 [arXiv:1102.4317] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    J. Casalderrey-Solana and E. Iancu, Interference effects in medium-induced gluon radiation, JHEP 08 (2011) 015 [arXiv:1105.1760] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    J. Casalderrey-Solana, Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, New picture of jet quenching dictated by color coherence, Phys. Lett. B 725 (2013) 357 [arXiv:1210.7765] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    J.G. Milhano and K.C. Zapp, Origins of the di-jet asymmetry in heavy ion collisions, Eur. Phys. J. C 76 (2016) 288 [arXiv:1512.08107] [INSPIRE].ADSCrossRefGoogle Scholar
  120. [120]
    M.A. Escobedo and E. Iancu, Event-by-event fluctuations in the medium-induced jet evolution, JHEP 05 (2016) 008 [arXiv:1601.03629] [INSPIRE].ADSCrossRefGoogle Scholar
  121. [121]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
  122. [122]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  123. [123]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    D. Bak, A. Karch and L.G. Yaffe, Debye screening in strongly coupled N = 4 supersymmetric Yang-Mills plasma, JHEP 08 (2007) 049 [arXiv:0705.0994] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  125. [125]
    J. Casalderrey-Solana, D. Pablos and K. Tywoniuk, Two-gluon emission and interference in a thin QCD medium: insights into jet formation, JHEP 11 (2016) 174 [arXiv:1512.07561] [INSPIRE].ADSCrossRefGoogle Scholar
  126. [126]
    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and p T broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].
  127. [127]
    F. D’Eramo, M. Lekaveckas, H. Liu and K. Rajagopal, Momentum broadening in weakly coupled quark-gluon plasma (with a view to finding the quasiparticles within liquid quark-gluon plasma), JHEP 05 (2013) 031 [arXiv:1211.1922] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Zachary Hulcher
    • 1
  • Daniel Pablos
    • 2
  • Krishna Rajagopal
    • 1
  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.
  2. 2.Department of PhysicsMcGill UniversityMontréalCanada

Personalised recommendations