Higgs and superparticle mass predictions from the landscape

  • Howard Baer
  • Vernon Barger
  • Hasan Serce
  • Kuver Sinha
Open Access
Regular Article - Theoretical Physics


Predictions for the scale of SUSY breaking from the string landscape go back at least a decade to the work of Denef and Douglas on the statistics of flux vacua. The assumption that an assortment of SUSY breaking F and D terms are present in the hidden sector, and their values are uniformly distributed in the landscape of D = 4, N = 1 effective supergravity models, leads to the expectation that the landscape pulls towards large values of soft terms favored by a power law behavior P(msoft) ∼ m soft n . On the other hand, similar to Weinberg’s prediction of the cosmological constant, one can assume an anthropic selection of weak scales not too far from the measured value characterized by mW,Z,h ∼ 100 GeV. Working within a fertile patch of gravity-mediated low energy effective theories where the superpotential μ term is ≪ m3/2, as occurs in models such as radiative breaking of Peccei-Quinn symmetry, this biases statistical distributions on the landscape by a cutoff on the parameter ΔEW, which measures fine-tuning in the mZ-μ mass relation. The combined effect of statistical and anthropic pulls turns out to favor low energy phenomenology that is more or less agnostic to UV physics. While a uniform selection n = 0 of soft terms produces too low a value for mh, taking n = 1 and 2 produce most probabilistically mh ∼ 125 GeV for negative trilinear terms. For n ≥ 1, there is a pull towards split generations with \( {m}_{\tilde{q},\tilde{\ell}}\left(1,2\right)\sim 10-30 \) TeV whilst \( {m}_{{\tilde{t}}_1}\sim 1-2\ \mathrm{T}\mathrm{e}\mathrm{V} \). The most probable gluino mass comes in at ∼ 3 − 4 TeV — apparently beyond the reach of HL-LHC (although the required quasi-degenerate higgsinos should still be within reach). We comment on consequences for SUSY collider and dark matter searches.


Supersymmetry Phenomenology Strings and branes phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. Weinberg, Anthropic bound on the cosmological constant, Phys. Rev. Lett. 59 (1987) 2607 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
  5. [5]
    L. Susskind, The anthropic landscape of string theory, in Universe or multiverse?, B. Carr ed., (2003), pg. 247 [hep-th/0302219] [INSPIRE].
  6. [6]
    L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [INSPIRE].
  7. [7]
    E. Witten, Dynamical breaking of supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].
  8. [8]
    R.K. Kaul, Gauge hierarchy in a supersymmetric model, Phys. Lett. B 109 (1982) 19 [INSPIRE].
  9. [9]
    M. Carena and H.E. Haber, Higgs boson theory and phenomenology, Prog. Part. Nucl. Phys. 50 (2003) 63 [hep-ph/0208209] [INSPIRE].
  10. [10]
    P. Draper and H. Rzehak, A review of Higgs mass calculations in supersymmetric models, Phys. Rept. 619 (2016) 1 [arXiv:1601.01890] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    N. Craig, The state of supersymmetry after run I of the LHC, arXiv:1309.0528 [INSPIRE].
  12. [12]
    R. Barbieri and G.F. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].
  13. [13]
    H. Baer, V. Barger and D. Mickelson, How conventional measures overestimate electroweak fine-tuning in supersymmetric theory, Phys. Rev. D 88 (2013) 095013 [arXiv:1309.2984] [INSPIRE].
  14. [14]
    H. Baer, V. Barger, D. Mickelson and M. Padeffke-Kirkland, SUSY models under siege: LHC constraints and electroweak fine-tuning, Phys. Rev. D 89 (2014) 115019 [arXiv:1404.2277] [INSPIRE].
  15. [15]
    J.R. Ellis, K. Enqvist, D.V. Nanopoulos and F. Zwirner, Observables in low-energy superstring models, Mod. Phys. Lett. A 1 (1986) 57 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].
  17. [17]
    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    H. Baer, V. Barger, P. Huang, A. Mustafayev and X. Tata, Radiative natural SUSY with a 125 GeV Higgs boson, Phys. Rev. Lett. 109 (2012) 161802 [arXiv:1207.3343] [INSPIRE].
  20. [20]
    H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev and X. Tata, Radiative natural supersymmetry: reconciling electroweak fine-tuning and the Higgs boson mass, Phys. Rev. D 87 (2013) 115028 [arXiv:1212.2655] [INSPIRE].
  21. [21]
    H. Baer and X. Tata, Weak scale supersymmetry: from superfields to scattering events, Cambridge Univ. Pr., Cambridge U.K., (2006).Google Scholar
  22. [22]
    K.L. Chan, U. Chattopadhyay and P. Nath, Naturalness, weak scale supersymmetry and the prospect for the observation of supersymmetry at the Tevatron and at the CERN LHC, Phys. Rev. D 58 (1998) 096004 [hep-ph/9710473] [INSPIRE].
  23. [23]
    R. Barbieri and D. Pappadopulo, S-particles at their naturalness limits, JHEP 10 (2009) 061 [arXiv:0906.4546] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    H. Baer, V. Barger and P. Huang, Hidden SUSY at the LHC: the light higgsino-world scenario and the role of a lepton collider, JHEP 11 (2011) 031 [arXiv:1107.5581] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    H. Baer, V. Barger and M. Savoy, Upper bounds on sparticle masses from naturalness or how to disprove weak scale supersymmetry, Phys. Rev. D 93 (2016) 035016 [arXiv:1509.02929] [INSPIRE].
  26. [26]
    M. Dine, A. Kagan and S. Samuel, Naturalness in supersymmetry, or raising the supersymmetry breaking scale, Phys. Lett. B 243 (1990) 250 [INSPIRE].
  27. [27]
    N. Arkani-Hamed and H. Murayama, Can the supersymmetric flavor problem be solved by decoupling?, Phys. Rev. D 56 (1997) R6733.Google Scholar
  28. [28]
    A.G. Cohen, D.B. Kaplan and A.E. Nelson, The more minimal supersymmetric Standard Model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].
  29. [29]
    J. Bagger, J.L. Feng and N. Polonsky, Naturally heavy scalars in supersymmetric grand unified theories, Nucl. Phys. B 563 (1999) 3 [hep-ph/9905292] [INSPIRE].
  30. [30]
    G.F. Giudice and A. Masiero, A natural solution to the μ-problem in supergravity theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].
  31. [31]
    J.E. Kim and H.P. Nilles, The μ-problem and the strong CP problem, Phys. Lett. B 138 (1984) 150 [INSPIRE].
  32. [32]
    M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].
  33. [33]
    A.R. Zhitnitsky, On possible suppression of the axion hadron interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [Yad. Fiz. 31 (1980) 497] [INSPIRE].
  34. [34]
    H. Murayama, H. Suzuki and T. Yanagida, Radiative breaking of Peccei-Quinn symmetry at the intermediate mass scale, Phys. Lett. B 291 (1992) 418 [INSPIRE].
  35. [35]
    T. Gherghetta and G.L. Kane, Chaotic inflation and a radiatively generated intermediate scale in the supersymmetric Standard Model, Phys. Lett. B 354 (1995) 300 [hep-ph/9504420] [INSPIRE].
  36. [36]
    K. Choi, E.J. Chun and J.E. Kim, Cosmological implications of radiatively generated axion scale, Phys. Lett. B 403 (1997) 209 [hep-ph/9608222] [INSPIRE].
  37. [37]
    K.J. Bae, H. Baer and H. Serce, Natural little hierarchy for SUSY from radiative breaking of the Peccei-Quinn symmetry, Phys. Rev. D 91 (2015) 015003 [arXiv:1410.7500] [INSPIRE].
  38. [38]
    L. Aparicio, M. Cicoli, S. Krippendorf, A. Maharana, F. Muia and F. Quevedo, Sequestered de Sitter string scenarios: soft-terms, JHEP 11 (2014) 071 [arXiv:1409.1931] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J.L. Feng, K.T. Matchev and T. Moroi, Multi-TeV scalars are natural in minimal supergravity, Phys. Rev. Lett. 84 (2000) 2322 [hep-ph/9908309] [INSPIRE].
  40. [40]
    J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].
  41. [41]
    H. Baer, V. Barger and M. Savoy, Generalized focus point and mass spectra comparison of highly natural SUGRA GUT models, Phys. Rev. D 93 (2016) 075001 [arXiv:1602.06973] [INSPIRE].
  42. [42]
    F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072 [hep-th/0404116] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    M.R. Douglas, Statistical analysis of the supersymmetry breaking scale, hep-th/0405279 [INSPIRE].
  44. [44]
    M. Dine, E. Gorbatov and S.D. Thomas, Low energy supersymmetry from the landscape, JHEP 08 (2008) 098 [hep-th/0407043] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    M. Dine, Supersymmetry, naturalness and the landscape, hep-th/0410201 [INSPIRE].
  46. [46]
    V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel, The anthropic principle and the mass scale of the Standard Model, Phys. Rev. D 57 (1998) 5480 [hep-ph/9707380] [INSPIRE].
  47. [47]
    V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel, Anthropic considerations in multiple domain theories and the scale of electroweak symmetry breaking, Phys. Rev. Lett. 80 (1998) 1822 [hep-ph/9801253] [INSPIRE].
  48. [48]
    H. Baer, V. Barger, M. Savoy and H. Serce, The Higgs mass and natural supersymmetric spectrum from the landscape, Phys. Lett. B 758 (2016) 113 [arXiv:1602.07697] [INSPIRE].
  49. [49]
    G.F. Giudice and R. Rattazzi, Living dangerously with low-energy supersymmetry, Nucl. Phys. B 757 (2006) 19 [hep-ph/0606105] [INSPIRE].
  50. [50]
    Y. Nomura and D. Poland, Predictive supersymmetry from criticality, Phys. Lett. B 648 (2007) 213 [hep-ph/0611249] [INSPIRE].
  51. [51]
    B. Dutta and Y. Mimura, Landscape of little hierarchy, Phys. Lett. B 648 (2007) 357 [hep-ph/0702002] [INSPIRE].
  52. [52]
    F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: a Monte Carlo event generator for pp, \( \overline{p}p \) and e + e reactions, hep-ph/0312045 [INSPIRE].
  53. [53]
    H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    L. Susskind, Supersymmetry breaking in the anthropic landscape, in From fields to strings, vol. 3, M. Shifman et al. eds., (2004), pg. 1745 [hep-th/0405189] [INSPIRE].
  55. [55]
    M.R. Douglas, The string landscape and low-energy supersymmetry, Les Houches Lect. Notes 97 (2015) 315 [INSPIRE].MATHGoogle Scholar
  56. [56]
    F. Denef, M.R. Douglas and S. Kachru, Physics of string flux compactifications, Ann. Rev. Nucl. Part. Sci. 57 (2007) 119 [hep-th/0701050] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J. Kumar, A review of distributions on the string landscape, Int. J. Mod. Phys. A 21 (2006) 3441 [hep-th/0601053] [INSPIRE].
  58. [58]
    K. Harigaya, M. Ibe, K. Schmitz and T.T. Yanagida, Cosmological selection of multi-TeV supersymmetry, Phys. Lett. B 749 (2015) 298 [arXiv:1506.00426] [INSPIRE].
  59. [59]
    T. Banks, M. Dine and E. Gorbatov, Is there a string theory landscape?, JHEP 08 (2004) 058 [hep-th/0309170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    H. Baer, V. Barger and M. Savoy, Supergravity gauge theories strike back: there is no crisis for SUSY but a new collider may be required for discovery, Phys. Scripta 90 (2015) 068003 [arXiv:1502.04127] [INSPIRE].
  62. [62]
    H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, Phys. Rev. D 85 (2012) 075010 [arXiv:1112.3017] [INSPIRE].
  63. [63]
    R. Harnik, G.D. Kribs and G. Perez, A universe without weak interactions, Phys. Rev. D 74 (2006) 035006 [hep-ph/0604027] [INSPIRE].
  64. [64]
    C.J. Hogan, Nuclear astrophysics of worlds in the string landscape, Phys. Rev. D 74 (2006) 123514 [astro-ph/0602104] [INSPIRE].
  65. [65]
    L. Clavelli and R.E. White, III, Problems in a weakless universe, hep-ph/0609050 [INSPIRE].
  66. [66]
    D. Matalliotakis and H.P. Nilles, Implications of nonuniversality of soft terms in supersymmetric grand unified theories, Nucl. Phys. B 435 (1995) 115 [hep-ph/9407251] [INSPIRE].
  67. [67]
    M. Olechowski and S. Pokorski, Electroweak symmetry breaking with nonuniversal scalar soft terms and large tan β solutions, Phys. Lett. B 344 (1995) 201 [hep-ph/9407404] [INSPIRE].
  68. [68]
    P. Nath and R.L. Arnowitt, Nonuniversal soft SUSY breaking and dark matter, Phys. Rev. D 56 (1997) 2820 [hep-ph/9701301] [INSPIRE].
  69. [69]
    J.R. Ellis, K.A. Olive and Y. Santoso, The MSSM parameter space with nonuniversal Higgs masses, Phys. Lett. B 539 (2002) 107 [hep-ph/0204192] [INSPIRE].
  70. [70]
    J.R. Ellis, T. Falk, K.A. Olive and Y. Santoso, Exploration of the MSSM with nonuniversal Higgs masses, Nucl. Phys. B 652 (2003) 259 [hep-ph/0210205] [INSPIRE].
  71. [71]
    H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Direct, indirect and collider detection of neutralino dark matter in SUSY models with non-universal Higgs masses, JHEP 07 (2005) 065 [hep-ph/0504001] [INSPIRE].
  72. [72]
    O. Lebedev et al., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett. B 645 (2007) 88 [hep-th/0611095] [INSPIRE].
  73. [73]
    O. Lebedev et al., The heterotic road to the MSSM with R parity, Phys. Rev. D 77 (2008) 046013 [arXiv:0708.2691] [INSPIRE].
  74. [74]
    O. Lebedev, H.P. Nilles, S. Ramos-Sanchez, M. Ratz and P.K.S. Vaudrevange, Heterotic mini-landscape. (II). Completing the search for MSSM vacua in a Z 6 orbifold, Phys. Lett. B 668 (2008) 331 [arXiv:0807.4384] [INSPIRE].
  75. [75]
    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Local grand unification, hep-ph/0512326 [INSPIRE].
  76. [76]
    M. Ratz, Notes on local grand unification, arXiv:0711.1582 [INSPIRE].
  77. [77]
    H.P. Nilles and P.K.S. Vaudrevange, Geography of fields in extra dimensions: string theory lessons for particle physics, Mod. Phys. Lett. A 30 (2015) 1530008 [arXiv:1403.1597] [INSPIRE].
  78. [78]
    H. Baer, V. Barger, M. Padeffke-Kirkland and X. Tata, Naturalness implies intra-generational degeneracy for decoupled squarks and sleptons, Phys. Rev. D 89 (2014) 037701 [arXiv:1311.4587] [INSPIRE].
  79. [79]
    S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [INSPIRE].
  80. [80]
    H. Baer, C. Balázs, P. Mercadante, X. Tata and Y. Wang, Viable supersymmetric models with an inverted scalar mass hierarchy at the GUT scale, Phys. Rev. D 63 (2001) 015011 [hep-ph/0008061] [INSPIRE].
  81. [81]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  82. [82]
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, FeynHiggs 2.7, Nucl. Phys. Proc. Suppl. 205-206 (2010) 152 [arXiv:1007.0956] [INSPIRE].
  83. [83]
    J. Pardo Vega and G. Villadoro, SusyHD: Higgs mass determination in supersymmetry, JHEP 07 (2015) 159 [arXiv:1504.05200] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb −1 of \( \sqrt{s}=13 \) TeV pp collision data with the ATLAS detector, ATLAS-CONF-2017-022, CERN, Geneva Switzerland, (2017).
  85. [85]
    CMS collaboration, T. Sakuma, Squark/gluino searches in hadronic channels with CMS, PoS(LHCP2016)145 [arXiv:1609.07445] [INSPIRE].
  86. [86]
    M. Yu. Khlopov and A.D. Linde, Is it easy to save the gravitino?, Phys. Lett. B 138 (1984) 265 [INSPIRE].
  87. [87]
    ATLAS collaboration, Search for top squarks in final states with one isolated lepton, jets and missing transverse momentum using 36.1 fb −1 of \( \sqrt{13} \) TeV pp collision data with the ATLAS detector, ATLAS-CONF-2017-037, CERN, Geneva Switzerland, (2017).
  88. [88]
    CMS collaboration, Search for top squark pair production in pp collisions at \( \sqrt{s}=13 \) TeV using single lepton events, JHEP 10 (2017) 019 [arXiv:1706.04402] [INSPIRE].
  89. [89]
    H. Baer, V. Barger, J.S. Gainer, H. Serce and X. Tata, Reach of the high-energy LHC for gluinos and top squarks in SUSY models with light Higgsinos, Phys. Rev. D 96 (2017) 115008 [arXiv:1708.09054] [INSPIRE].
  90. [90]
    H. Baer et al., Gluino reach and mass extraction at the LHC in radiatively-driven natural SUSY, Eur. Phys. J. C 77 (2017) 499 [arXiv:1612.00795] [INSPIRE].
  91. [91]
    ATLAS collaboration, Prospects for benchmark supersymmetry searches at the high luminosity LHC with the ATLAS detector, ATL-PHYS-PUB-2013-011, CERN, Geneva Switzerland, (2013).
  92. [92]
    H. Baer, V. Barger, N. Nagata and M. Savoy, Phenomenological profile of top squarks from natural supersymmetry at the LHC, Phys. Rev. D 95 (2017) 055012 [arXiv:1611.08511] [INSPIRE].
  93. [93]
    H. Baer et al., What hadron collider is required to discover or falsify natural supersymmetry?, Phys. Lett. B 774 (2017) 451 [arXiv:1702.06588] [INSPIRE].
  94. [94]
    H. Baer et al., Same sign diboson signature from supersymmetry models with light higgsinos at the LHC, Phys. Rev. Lett. 110 (2013) 151801 [arXiv:1302.5816] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    H. Baer et al., Radiatively-driven natural supersymmetry at the LHC, JHEP 12 (2013) 013 [Erratum ibid. 06 (2015) 053] [arXiv:1310.4858] [INSPIRE].
  96. [96]
    H. Baer, V. Barger, J.S. Gainer, M. Savoy, D. Sengupta and X. Tata, Aspects of the same-sign diboson signature from wino pair production with light higgsinos at the high luminosity LHC, Phys. Rev. D 97 (2018) 035012 [arXiv:1710.09103] [INSPIRE].
  97. [97]
    Z. Han, G.D. Kribs, A. Martin and A. Menon, Hunting quasidegenerate Higgsinos, Phys. Rev. D 89 (2014) 075007 [arXiv:1401.1235] [INSPIRE].
  98. [98]
    H. Baer, A. Mustafayev and X. Tata, Monojet plus soft dilepton signal from light higgsino pair production at LHC14, Phys. Rev. D 90 (2014) 115007 [arXiv:1409.7058] [INSPIRE].
  99. [99]
    C. Han, D. Kim, S. Munir and M. Park, Accessing the core of naturalness, nearly degenerate higgsinos, at the LHC, JHEP 04 (2015) 132 [arXiv:1502.03734] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    CMS collaboration, Search for new physics in events with two low momentum opposite-sign leptons and missing transverse energy at \( \sqrt{s}=13 \) TeV, CMS-PAS-SUS-16-048, CERN, Geneva Switzerland, (2016).
  101. [101]
    H. Baer, A. Mustafayev and X. Tata, Monojets and mono-photons from light higgsino pair production at LHC14, Phys. Rev. D 89 (2014) 055007 [arXiv:1401.1162] [INSPIRE].
  102. [102]
    A.G. Delannoy et al., Probing dark matter at the LHC using vector boson fusion processes, Phys. Rev. Lett. 111 (2013) 061801 [arXiv:1304.7779] [INSPIRE].
  103. [103]
    A. Berlin, T. Lin, M. Low and L.-T. Wang, Neutralinos in vector boson fusion at high energy colliders, Phys. Rev. D 91 (2015) 115002 [arXiv:1502.05044] [INSPIRE].
  104. [104]
    H. Baer, V. Barger, D. Mickelson, A. Mustafayev and X. Tata, Physics at a Higgsino factory, JHEP 06 (2014) 172 [arXiv:1404.7510] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    S.-L. Lehtinen et al., Naturalness and light Higgsinos: why ILC is the right machine for SUSY discovery, arXiv:1710.02406 [INSPIRE].
  106. [106]
    K.J. Bae, H. Baer and E.J. Chun, Mixed axion/neutralino dark matter in the SUSY DFSZ axion model, JCAP 12 (2013) 028 [arXiv:1309.5365] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    K.J. Bae, H. Baer, A. Lessa and H. Serce, Coupled Boltzmann computation of mixed axion neutralino dark matter in the SUSY DFSZ axion model, JCAP 10 (2014) 082 [arXiv:1406.4138] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    H. Baer, V. Barger and D. Mickelson, Direct and indirect detection of higgsino-like WIMPs: concluding the story of electroweak naturalness, Phys. Lett. B 726 (2013) 330 [arXiv:1303.3816] [INSPIRE].
  109. [109]
    K.J. Bae, H. Baer, V. Barger, M.R. Savoy and H. Serce, Supersymmetry with radiatively-driven naturalness: implications for WIMP and axion searches, Symmetry 7 (2015) 788.Google Scholar
  110. [110]
    H. Baer, V. Barger and H. Serce, SUSY under siege from direct and indirect WIMP detection experiments, Phys. Rev. D 94 (2016) 115019 [arXiv:1609.06735] [INSPIRE].
  111. [111]
    LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  112. [112]
    PandaX-II collaboration, X. Cui et al., Dark matter results from 54-ton-day exposure of PandaX-II experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
  113. [113]
    Fermi-LAT and MAGIC collaborations, M.L. Ahnen et al., Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies, JCAP 02 (2016) 039 [arXiv:1601.06590] [INSPIRE].
  114. [114]
    K.J. Bae, H. Baer and H. Serce, Prospects for axion detection in natural SUSY with mixed axion-higgsino dark matter: back to invisible?, JCAP 06 (2017) 024 [arXiv:1705.01134] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    G.D. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Cosmological problems for the Polonyi potential, Phys. Lett. B 131 (1983) 59 [INSPIRE].
  116. [116]
    L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the messenger of supersymmetry breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].
  117. [117]
    T. Banks, D.B. Kaplan and A.E. Nelson, Cosmological implications of dynamical supersymmetry breaking, Phys. Rev. D 49 (1994) 779 [hep-ph/9308292] [INSPIRE].
  118. [118]
    M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  119. [119]
    G. Kane, K. Sinha and S. Watson, Cosmological moduli and the post-inflationary universe: a critical review, Int. J. Mod. Phys. D 24 (2015) 1530022 [arXiv:1502.07746] [INSPIRE].
  120. [120]
    B.S. Acharya, G. Kane and E. Kuflik, Bounds on scalar masses in theories of moduli stabilization, Int. J. Mod. Phys. A 29 (2014) 1450073 [arXiv:1006.3272] [INSPIRE].
  121. [121]
    B. Dutta, L. Leblond and K. Sinha, Mirage in the sky: non-thermal dark matter, gravitino problem and cosmic ray anomalies, Phys. Rev. D 80 (2009) 035014 [arXiv:0904.3773 [INSPIRE].
  122. [122]
    R. Allahverdi, B. Dutta and K. Sinha, Non-thermal Higgsino dark matter: cosmological motivations and implications for a 125 GeV Higgs, Phys. Rev. D 86 (2012) 095016 [arXiv:1208.0115] [INSPIRE].
  123. [123]
    K. Choi, A. Falkowski, H.P. Nilles, M. Olechowski and S. Pokorski, Stability of flux compactifications and the pattern of supersymmetry breaking, JHEP 11 (2004) 076 [hep-th/0411066] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  124. [124]
    K. Choi and H.P. Nilles, The gaugino code, JHEP 04 (2007) 006 [hep-ph/0702146] [INSPIRE].
  125. [125]
    J.J. Heckman, Particle physics implications of F-theory, Ann. Rev. Nucl. Part. Sci. 60 (2010) 237 [arXiv:1001.0577] [INSPIRE].ADSCrossRefGoogle Scholar
  126. [126]
    S. Schäfer-Nameki, F-theory: from geometry to phenomenology, Adv. Ser. Direct. High Energy Phys. 22 (2015) 245 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Howard Baer
    • 1
  • Vernon Barger
    • 2
  • Hasan Serce
    • 3
  • Kuver Sinha
    • 1
  1. 1.Homer L. Dodge Department of Physics and AstronomyUniversity of OklahomaNormanU.S.A.
  2. 2.Department of PhysicsUniversity of WisconsinMadisonU.S.A.
  3. 3.Department of Engineering and PhysicsUniversity of Central OklahomaEdmundU.S.A.

Personalised recommendations