Yukawa ratio predictions in non-renormalizable SO(10) GUT models

Abstract

Since SO(10) GUTs unify all fermions of the Standard Model plus a right-chiral neutrino in a representation 16 per family, they have the potential to be maximally predictive regarding the ratios between the masses (or Yukawa couplings) of different fermion types, i.e. the up-type quarks, down-type quarks, charged leptons and neutrinos. We analyze the predictivity of classes of SO(10) (SUSY) GUT models for the fermion mass ratios, where the Yukawa couplings for each family are dominated by a single effective GUT operator of the schematic form 162 · 45n · 210m · H, for H ∈ {10, 120, \( \overline{\mathbf{126}} \)}. This extends previous works to general vacuum expectation value directions for GUT-scale VEVs and to larger Higgs representations. In addition, we show that the location of the MSSM Higgses in the space of all doublets is a crucial aspect to consider. We discuss highly predictive cases and illustrate the predictive power in toy models consisting of masses for the 3rd and 2nd fermion family.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    B. Bajc, A. Melfo, G. Senjanović and F. Vissani, The minimal supersymmetric grand unified theory. 1. Symmetry breaking and the particle spectrum, Phys. Rev. D 70 (2004) 035007 [hep-ph/0402122] [INSPIRE].

  2. [2]

    B. Bajc, A. Melfo, G. Senjanović and F. Vissani, Fermion mass relations in a supersymmetric SO(10) theory, Phys. Lett. B 634 (2006) 272 [hep-ph/0511352] [INSPIRE].

  3. [3]

    B. Bajc, A. Melfo, G. Senjanović and F. Vissani, Yukawa sector in non-supersymmetric renormalizable SO(10), Phys. Rev. D 73 (2006) 055001 [hep-ph/0510139] [INSPIRE].

  4. [4]

    B. Bajc, I. Dorsner and M. Nemevšek, Minimal SO(10) splits supersymmetry, JHEP 11 (2008) 007 [arXiv:0809.1069] [INSPIRE].

  5. [5]

    K.S. Babu, B. Bajc and S. Saad, Yukawa Sector of Minimal SO(10) Unification, JHEP 02 (2017) 136 [arXiv:1612.04329] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    A. Dueck and W. Rodejohann, Fits to SO(10) Grand Unified Models, JHEP 09 (2013) 024 [arXiv:1306.4468] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    A.S. Joshipura and K.M. Patel, Fermion Masses in SO(10) Models, Phys. Rev. D 83 (2011) 095002 [arXiv:1102.5148] [INSPIRE].

  8. [8]

    K.S. Babu, B. Bajc and S. Saad, Resurrecting Minimal Yukawa Sector of SUSY SO(10), JHEP 10 (2018) 135 [arXiv:1805.10631] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    K.S. Babu, B. Bajc and S. Saad, New Class of SO(10) Models for Flavor, Phys. Rev. D 94 (2016) 015030 [arXiv:1605.05116] [INSPIRE].

  10. [10]

    H. Georgi and C. Jarlskog, A New Lepton — Quark Mass Relation in a Unified Theory, Phys. Lett. 86B (1979) 297 [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    S. Antusch and M. Spinrath, New GUT predictions for quark and lepton mass ratios confronted with phenomenology, Phys. Rev. D 79 (2009) 095004 [arXiv:0902.4644] [INSPIRE].

  12. [12]

    S. Antusch, S.F. King and M. Spinrath, GUT predictions for quark-lepton Yukawa coupling ratios with messenger masses from non-singlets, Phys. Rev. D 89 (2014) 055027 [arXiv:1311.0877] [INSPIRE].

  13. [13]

    S. Antusch, S.F. King and M. Spinrath, Spontaneous CP-violation in A4 × SU(5) with Constrained Sequential Dominance 2, Phys. Rev. D 87 (2013) 096018 [arXiv:1301.6764] [INSPIRE].

  14. [14]

    S. Antusch, C. Gross, V. Maurer and C. Sluka, A flavour GUT model with \( {\theta}_{13}^{PMNS}\simeq {\theta}_C/\sqrt{2} \), Nucl. Phys. B 877 (2013) 772 [arXiv:1305.6612] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    S. Antusch, C. Gross, V. Maurer and C. Sluka, Inverse neutrino mass hierarchy in a flavour GUT model, Nucl. Phys. B 879 (2014) 19 [arXiv:1306.3984] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    I. Girardi, A. Meroni, S.T. Petcov and M. Spinrath, Generalised geometrical CP-violation in a T’ lepton flavour model, JHEP 02 (2014) 050 [arXiv:1312.1966] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    S. Antusch, M. Holthausen, M.A. Schmidt and M. Spinrath, Solving the Strong CP Problem with Discrete Symmetries and the Right Unitarity Triangle, Nucl. Phys. B 877 (2013) 752 [arXiv:1307.0710] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    Y. Zhao and P.-F. Zhang, SUSY SU(5) × S4 GUT Flavor Model for Fermion Masses and Mixings with Adjoint, Large \( {\theta}_{13}^{PMNS} \), JHEP 06 (2016) 032 [arXiv:1402.5834] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    S. Antusch, I. de Medeiros Varzielas, V. Maurer, C. Sluka and M. Spinrath, Towards predictive flavour models in SUSY SU(5) GUTs with doublet-triplet splitting, JHEP 09 (2014) 141 [arXiv:1405.6962] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    J. Gehrlein, J.P. Oppermann, D. Schäfer and M. Spinrath, An SU(5) × A5 golden ratio flavour model, Nucl. Phys. B 890 (2014) 539 [arXiv:1410.2057] [INSPIRE].

  21. [21]

    M. Dimou, S.F. King and C. Luhn, Approaching Minimal Flavour Violation from an SU(5) × S4 × U(1) SUSY GUT, JHEP 02 (2016) 118 [arXiv:1511.07886] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete A4 × SU(5) SUSY GUT, JHEP 06 (2015) 141 [arXiv:1503.03306] [INSPIRE].

  23. [23]

    S. Antusch and C. Hohl, Predictions from a flavour GUT model combined with a SUSY breaking sector, JHEP 10 (2017) 155 [arXiv:1706.04274] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    S. Antusch, C. Hohl, C.K. Khosa and V. Susič, Predicting δPMNS, \( {\theta}_{23}^{PMNS} \) and fermion mass ratios from flavour GUTs with CSD2, JHEP 12 (2018) 025 [arXiv:1808.09364] [INSPIRE].

  25. [25]

    G. Anderson, S. Raby, S. Dimopoulos, L.J. Hall and G.D. Starkman, A systematic SO(10) operator analysis for fermion masses, Phys. Rev. D 49 (1994) 3660 [hep-ph/9308333] [INSPIRE].

  26. [26]

    S.F. King and C. Luhn, A Supersymmetric Grand Unified Theory of Flavour with PSL2(7) × SO(10), Nucl. Phys. B 832 (2010) 414 [arXiv:0912.1344] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    A. Anandakrishnan, S. Raby and A. Wingerter, Yukawa Unification Predictions for the LHC, Phys. Rev. D 87 (2013) 055005 [arXiv:1212.0542] [INSPIRE].

  28. [28]

    F. Björkeroth, F.J. de Anda, S.F. King and E. Perdomo, A natural S4 × SO(10) model of flavour, JHEP 10 (2017) 148 [arXiv:1705.01555] [INSPIRE].

  29. [29]

    T. Deppisch, S. Schacht and M. Spinrath, Confronting SUSY SO(10) with updated Lattice and Neutrino Data, JHEP 01 (2019) 005 [arXiv:1811.02895] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    P. Nath and P. Fileviez Perez, Proton stability in grand unified theories, in strings and in branes, Phys. Rept. 441 (2007) 191 [hep-ph/0601023] [INSPIRE].

  31. [31]

    K.S. Babu, I. Gogoladze, P. Nath and R.M. Syed, Variety of SO(10) GUTs with Natural Doublet-Triplet Splitting via the Missing Partner Mechanism, Phys. Rev. D 85 (2012) 075002 [arXiv:1112.5387] [INSPIRE].

  32. [32]

    A. Masiero, D.V. Nanopoulos, K. Tamvakis and T. Yanagida, Naturally Massless Higgs Doublets in Supersymmetric SU(5), Phys. Lett. 115B (1982) 380 [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    K.S. Babu, I. Gogoladze and Z. Tavartkiladze, Missing Partner Mechanism in SO(10) Grand Unification, Phys. Lett. B 650 (2007) 49 [hep-ph/0612315] [INSPIRE].

  34. [34]

    S. Dimopoulos and F. Wilczek, Incomplete multiplets in supersymmetric unified models, NSF-ITP-82-07 (1981).

  35. [35]

    K.S. Babu and S.M. Barr, Natural suppression of Higgsino mediated proton decay in supersymmetric SO(10), Phys. Rev. D 48 (1993) 5354 [hep-ph/9306242] [INSPIRE].

  36. [36]

    S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP 11 (2013) 115 [arXiv:1306.6879] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    S. Antusch and C. Sluka, Predicting the Sparticle Spectrum from GUTs via SUSY Threshold Corrections with SusyTC, JHEP 07 (2016) 108 [arXiv:1512.06727] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    S. Antusch, C. Hohl and V. Susič, Comparatively Light Extra Higgs States as Signature of SUSY SO(10) GUTs with 3rd Family Yukawa Unification, arXiv:1910.05191 [INSPIRE].

  39. [39]

    R. Slansky, Group Theory for Unified Model Building, Phys. Rept. 79 (1981) 1 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. [40]

    F. Wilczek and A. Zee, Families from Spinors, Phys. Rev. D 25 (1982) 553 [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    C.S. Aulakh, B. Bajc, A. Melfo, A. Rasin and G. Senjanović, SO(10) theory of R-parity and neutrino mass, Nucl. Phys. B 597 (2001) 89 [hep-ph/0004031] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christian Hohl.

Additional information

ArXiv ePrint: 1911.12807

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antusch, S., Hohl, C. & Susič, V. Yukawa ratio predictions in non-renormalizable SO(10) GUT models. J. High Energ. Phys. 2020, 86 (2020). https://doi.org/10.1007/JHEP02(2020)086

Download citation

Keywords

  • GUT
  • Beyond Standard Model