Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Late-time-accelerated expansion arisen from gauge fields in an anisotropic background and a fruitful trick for Noether’s approach


In this paper, a modified teleparallel gravity action containing a coupling be- tween a scalar field potential and magnetism, in anisotropic and homogeneous backgrounds, is investigated through Noether symmetry approach. The focus of this work is to describe late-time-accelerated expansion.

Since finding analytical solutions carrying all conserved currents emerged by Noether symmetry approach, is very difficult, hence regularly in the literature, the authors split the total symmetry into sub-symmetries and then select, usually, some of them to be carried by the solutions. This manner limits the forms of unknown functions obtained. However, in ref. [67], B.N.S. approach was proposed in order to solve such problems but its main motivation was carrying more conserved currents by solutions. In this paper, by eliminating the aforementioned limitation as much as possible, a trick leading to some graceful forms of unknown functions is suggested. Through this fruitful approach, the solutions may carry more conserved currents than usual ways and maybe new forms of symmetries. I named this new approach to be CSSS-trick (Combination of Sub-symmetries through Special Selections). With this approach, it is demonstrated that the unified dark matter potential is deduced by the gauge fields.

Utilizing the B-function method, a detailed data analysis of results obtained yielding perfect agreements with recent observational data are performed.

And finally, the Wheeler-De Witt (WDW) equation is discussed to demonstrate recov- ering the Hartle criterion due to the oscillating feature of the wave function of the universe.

A preprint version of the article is available at ArXiv.


  1. [1]

    WMAP collaboration, Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology, Astrophys. J. Suppl.170 (2007) 377 [astro-ph/0603449] [INSPIRE].

  2. [2]

    Supernova Cosmology Project collaboration, Discovery of a supernova explosion at half the age of the Universe and its cosmological implications, Nature391 (1998) 51 [astro-ph/9712212] [INSPIRE].

  3. [3]

    B. Jain and A. Taylor, Cross-correlation tomography: measuring dark energy evolution with weak lensing, Phys. Rev. Lett.91 (2003) 141302 [astro-ph/0306046] [INSPIRE].

  4. [4]

    Boomerang collaboration, A measurement by Boomerang of multiple peaks in the angular power spectrum of the cosmic microwave background, Astrophys. J.571 (2002) 604 [astro-ph/0104460] [INSPIRE].

  5. [5]

    SDSS collaboration, Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies, Astrophys. J.633 (2005) 560 [astro-ph/0501171] [INSPIRE].

  6. [6]

    2dFGRS collaboration, The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final dataset and cosmological implications, Mon. Not. Roy. Astron. Soc.362 (2005) 505 [astro-ph/0501174] [INSPIRE].

  7. [7]

    V. Sahni and A.A. Starobinsky, The Case for a positive cosmological Lambda term, Int. J. Mod. Phys.D 9 (2000) 373 [astro-ph/9904398] [INSPIRE].

  8. [8]

    R.R. Caldwell, A Phantom menace?, Phys. Lett.B 545 (2002) 23 [astro-ph/9908168] [INSPIRE].

  9. [9]

    R.R. Caldwell, M. Kamionkowski and N.N. Weinberg, Phantom energy and cosmic doomsday, Phys. Rev. Lett.91 (2003) 071301 [astro-ph/0302506] [INSPIRE].

  10. [10]

    S. Nojiri and S.D. Odintsov, Quantum de Sitter cosmology and phantom matter, Phys. Lett.B 562 (2003) 147 [hep-th/0303117] [INSPIRE].

  11. [11]

    S. Nojiri and S.D. Odintsov, DeSitter brane universe induced by phantom and quantum effects, Phys. Lett.B 565 (2003) 1 [hep-th/0304131] [INSPIRE].

  12. [12]

    S. Dutta, E.N. Saridakis and R.J. Scherrer, Dark energy from a quintessence (phantom) field rolling near potential minimum (maximum), Phys. Rev.D 79 (2009) 103005 [arXiv:0903.3412] [INSPIRE].

  13. [13]

    E.N. Saridakis, Phantom evolution in power-law potentials, Nucl. Phys.B 819 (2009) 116 [arXiv:0902.3978] [INSPIRE].

  14. [14]

    E. Elizalde, S. Nojiri and S.D. Odintsov, Late-time cosmology in (phantom) scalar-tensor theory: Dark energy and the cosmic speed-up, Phys. Rev.D 70 (2004) 043539 [hep-th/0405034] [INSPIRE].

  15. [15]

    Z.-K. Guo, R.-G. Cai and Y.-Z. Zhang, Cosmological evolution of interacting phantom energy with dark matter, JCAP05 (2005) 002 [astro-ph/0412624] [INSPIRE].

  16. [16]

    E.N. Saridakis and J.M. Weller, A Quintom scenario with mixed kinetic terms, Phys. Rev.D 81 (2010) 123523 [arXiv:0912.5304] [INSPIRE].

  17. [17]

    Y.-F. Cai, E.N. Saridakis, M.R. Setare and J.-Q. Xia, Quintom Cosmology: Theoretical implications and observations, Phys. Rept.493 (2010) 1 [arXiv:0909.2776] [INSPIRE].

  18. [18]

    B. Ratra and P.J.E. Peebles, Cosmological Consequences of a Rolling Homogeneous Scalar Field, Phys. Rev.D 37 (1988) 3406 [INSPIRE].

  19. [29]

    C. Wetterich, Cosmology and the Fate of Dilatation Symmetry, Nucl. Phys.B 302 (1988) 668 [arXiv:1711.03844] [INSPIRE].

  20. [20]

    A. Sen, Rolling tachyon, JHEP04 (2002) 048 [hep-th/0203211] [INSPIRE].

  21. [21]

    S. Nojiri and S.D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy, Int. J. Geom. Meth. Mod. Phys.4 (2007) 115 [hep-th/0601213] [INSPIRE].

  22. [22]

    T.P. Sotiriou and V. Faraoni, f (R) Theories Of Gravity, Rev. Mod. Phys.82 (2010) 451 [arXiv:0805.1726] [INSPIRE].

  23. [23]

    S. Bahamonde, C.G. Böhmer and M. Wright, Modified teleparallel theories of gravity, Phys. Rev.D 92 (2015) 104042 [arXiv:1508.05120] [INSPIRE].

  24. [24]

    B. Tajahmad, Studying the intervention of an unusual term in f (T ) gravity via the Noether symmetry approach: On a new term for f (T ) gravity actions, Eur. Phys. J.C 77 (2017) 510 [arXiv:1701.01620] [INSPIRE].

  25. [25]

    S. Bahamonde, S. Capozziello and K.F. Dialektopoulos, Constraining Generalized Non-local Cosmology from Noether Symmetries, Eur. Phys. J.C 77 (2017) 722 [arXiv:1708.06310] [INSPIRE].

  26. [26]

    S. Bahamonde and S. Capozziello, Noether Symmetry Approach in f (T , B) teleparallel cosmology, Eur. Phys. J.C 77 (2017) 107 [arXiv:1612.01299] [INSPIRE].

  27. [27]

    S. Bahamonde, K. Bamba and U. Camci, New Exact Spherically Symmetric Solutions in f (R, φ, X ) gravity by Noether’s symmetry approach, JCAP02 (2019) 016 [arXiv:1808.04328] [INSPIRE].

  28. [28]

    S. Bahamonde, U. Camci, S. Capozziello and M. Jamil, Scalar-Tensor Teleparallel Wormholes by Noether Symmetries, Phys. Rev.D 94 (2016) 084042 [arXiv:1608.03918] [INSPIRE].

  29. [29]

    S. Capozziello, M. De Laurentis and K.F. Dialektopoulos, Noether symmetries in Gauss-Bonnet-teleparallel cosmology, Eur. Phys. J.C 76 (2016) 629 [arXiv:1609.09289] [INSPIRE].

  30. [30]

    A. Paliathanasis and S. Capozziello, Noether symmetries and duality transformations in cosmology, Mod. Phys. Lett.A 31 (2016) 1650183 [arXiv:1602.08914] [INSPIRE].

  31. [31]

    S. Capozziello, S.J. Gionti, Gabriele and D. Vernieri, String duality transformations in f (R) gravity from Noether symmetry approach, JCAP01 (2016) 015 [arXiv:1508.00441] [INSPIRE].

  32. [32]

    S. Capozziello, M. De Laurentis and R. Myrzakulov, Noether Symmetry Approach for teleparallel-curvature cosmology, Int. J. Geom. Meth. Mod. Phys.12 (2015) 1550095 [arXiv:1412.1471] [INSPIRE].

  33. [33]

    A. Aslam, M. Jamil and R. Myrzakulov, Noether gauge symmetry for the Bianchi type-I model in f (T ) gravity, Phys. Scripta88 (2013) 025003 [arXiv:1308.0325] [INSPIRE].

  34. [34]

    D. Momeni and R. Myrzakulov, Noether symmetry in Horndeski Lagrangian, Can. J. Phys.94 (2016) 763 [arXiv:1410.1520] [INSPIRE].

  35. [35]

    B. Vakili, Noether symmetry in f (R) cosmology, Phys. Lett.B 664 (2008) 16 [arXiv:0804.3449] [INSPIRE].

  36. [36]

    Y. Kucukakca, Anisotropic solution via Noether symmetry for f (R) Palatini gravity, Astrophys. Space Sci.361 (2016) 80 [INSPIRE].

  37. [37]

    G. Gecim, Y. Kucukakca and Y. Sucu, Noether Gauge Symmetry of Dirac Field in (2 + 1)-Dimensional Gravity, Adv. High Energy Phys.2015 (2015) 567395 [arXiv:1410.5283] [INSPIRE].

  38. [38]

    Y. Kucukakca, Scalar tensor teleparallel dark gravity via Noether symmetry, Eur. Phys. J.C 73 (2013) 2327 [arXiv:1404.7315] [INSPIRE].

  39. [39]

    Y. Kucukakca, Teleparallel dark energy model with a fermionic field via Noether symmetry, Eur. Phys. J.C 74 (2014) 3086 [arXiv:1407.1188] [INSPIRE].

  40. [40]

    U. Camci and Y. Kucukakca, Noether symmetries of Bianchi I, Bianchi III and Kantowski-Sachs spacetimes in scalar-coupled gravity theories, Phys. Rev.D 76 (2007) 084023 [INSPIRE].

  41. [41]

    Y. Kucukakca, U. Camci and I. Semiz, LRS Bianchi type-I universes exhibiting Noether symmetry in the scalar-tensor Brans-Dicke theory, Gen. Rel. Grav.44 (2012) 1893 [arXiv:1204.6410] [INSPIRE].

  42. [42]

    Y. Kucuakca and U. Camci, Noether gauge symmetry for f (R) gravity in Palatini formalism, Astrophys. Space Sci.338 (2012) 211 [arXiv:1111.5336] [INSPIRE].

  43. [43]

    G. Gecim and Y. Kucukakca, Scalar-tensor teleparallel gravity with boundary term by Noether symmetries, Int. J. Geom. Meth. Mod. Phys.15 (2018) 1850151 [arXiv:1708.07430] [INSPIRE].

  44. [44]

    I. Basaran Oz, Y. Kucukakca and N. Unal, Anisotropic solution in phantom cosmology via Noether symmetry approach, Can. J. Phys.96 (2018) 677.

  45. [45]

    Y. Kucukakca, Noether symmetry analysis of anisotropic universe in f (T , B) gravity, Turk. J. Phys.42 (2018) 386 [arXiv:1807.05050] [INSPIRE].

  46. [46]

    B. Vakili, Noether symmetric f (R) quantum cosmology and its classical correlations, Phys. Lett.B 669 (2008) 206 [arXiv:0809.4591] [INSPIRE].

  47. [47]

    M. Sharif and H. Ismat Fatima, Noether symmetries in f (G) gravity, J. Exp. Theor. Phys.122 (2016) 104 [INSPIRE].

  48. [48]

    M. Jamil, D. Momeni and R. Myrzakulov, Noether symmetry of F(T) cosmology with quintessence and phantom scalar fields, Eur. Phys. J.C 72 (2012) 2137 [arXiv:1210.0001] [INSPIRE].

  49. [49]

    D. Momeni, R. Myrzakulov and E. Güdekli, Cosmological viable mimetic f (R) and f (R, T ) theories via Noether symmetry, Int. J. Geom. Meth. Mod. Phys.12 (2015) 1550101 [arXiv:1502.00977] [INSPIRE].

  50. [50]

    S. Capozziello, M. De Laurentis and R. Myrzakulov, Noether symmetry approach for Dirac-Born-Infeld cosmology, Int. J. Geom. Meth. Mod. Phys.12 (2015) 1550065 [arXiv:1411.7523] [INSPIRE].

  51. [51]

    S. Capozziello, M. De Laurentis and S.D. Odintsov, Noether Symmetry Approach in Gauss-Bonnet Cosmology, Mod. Phys. Lett.A 29 (2014) 1450164 [arXiv:1406.5652] [INSPIRE].

  52. [52]

    A. Paliathanasis, M. Tsamparlis, S. Basilakos and S. Capozziello, Scalar-Tensor Gravity Cosmology: Noether symmetries and analytical solutions, Phys. Rev.D 89 (2014) 063532 [arXiv:1403.0332] [INSPIRE].

  53. [53]

    A Ghose-Choudhury, P. Guha, A. Paliathanasis and P.G.L. Leach, Noetherian symmetries of noncentral forces with drag term, Int. J. Geom. Meth. Mod. Phys.14 (2017) 1750018 [arXiv:1608.03222].

  54. [54]

    A. Paliathanasis and M. Tsamparlis, Lie and Noether point symmetries of a class of quasilinear systems of second-order differential equations, J. Geom. Phys.107 (2016) 45 [arXiv:1605.03447] [INSPIRE].

  55. [55]

    M. Tsamparlis, A. Paliathanasis and A. Qadir, Noether symmetries and isometries of the minimal surface Lagrangian under constant volume in a Riemannian space, Int. J. Geom. Meth. Mod. Phys.12 (2015) 1550003 [arXiv:1407.4601] [INSPIRE].

  56. [56]

    S. Basilakos, M. Tsamparlis and A. Paliathanasis, Using the Noether symmetry approach to probe the nature of dark energy, Phys. Rev.D 83 (2011) 103512 [arXiv:1104.2980] [INSPIRE].

  57. [57]

    A.K. Sanyal and B. Modak, Is Noether symmetric approach consistent with dynamical equation in nonminimal scalar tensor theories?, Class. Quant. Grav.18 (2001) 3767 [gr-qc/0107052] [INSPIRE].

  58. [58]

    A.K. Sanyal, Noether and some other dynamical symmetries in Kantowski-Sachs model, Phys. Lett.B 524 (2002) 177 [gr-qc/0107053] [INSPIRE].

  59. [59]

    A.K. Sanyal, C. Rubano and E. Piedipalumbo, Coupling parameters and the form of the potential via Noether symmetry, Gen. Rel. Grav.35 (2003) 1617 [astro-ph/0210063] [INSPIRE].

  60. [60]

    A.K. Sanyal, C. Rubano and E. Piedipalumbo, Noether symmetry for Gauss-Bonnet dilatonic gravity, Gen. Rel. Grav.43 (2011) 2807 [arXiv:1107.0560] [INSPIRE].

  61. [61]

    N. Sk. and A.K. Sanyal, Revisiting Noether gauge symmetry for F(R) theory of gravity, Astrophys. Space Sci.342 (2012) 549 [arXiv:1208.2306] [INSPIRE].

  62. [62]

    K. Sarkar, N. Sk, S. Debnath and A.K. Sanyal, Viability of Noether symmetry of F(R) theory of gravity, Int. J. Theor. Phys.52 (2012) 1194 [arXiv:1207.3219] [INSPIRE].

  63. [63]

    K. Sarkar, N. Sk., S. Ruz, S. Debnath and A.K. Sanyal, Why Noether symmetry of F(R) theory yields three-half power law?, Int. J. Theor. Phys.52 (2013) 1515 [arXiv:1201.2987] [INSPIRE].

  64. [64]

    N. Sk and A.K. Sanyal, Revisiting Conserved Currents in the F (R) Theory of Gravity via Noether Symmetry, Chin. Phys. Lett.30 (2013) 020401.

  65. [65]

    B. Tajahmad, Noether Symmetries of a Modified Model in Teleparallel Gravity and a New Approach for Exact Solutions, Eur. Phys. J.C 77 (2017) 211 [arXiv:1610.08099] [INSPIRE].

  66. [66]

    E. Noether, Invariant Variation Problems (in German), Gott. Nachr.1918 (1918) 235 [physics/0503066] [INSPIRE].

  67. [67]

    B. Tajahmad and A.K. Sanyal, Unified cosmology with scalar-tensor theory of gravity, Eur. Phys. J.C 77 (2017) 217 [arXiv:1612.04239] [INSPIRE].

  68. [68]

    S. Capozziello and A. De Felice, f (R) cosmology by Noether’s symmetry, JCAP08 (2008) 016 [arXiv:0804.2163] [INSPIRE].

  69. [69]

    S. Capozziello and M. De Laurentis, Noether symmetries in extended gravity quantum cosmology, Int. J. Geom. Meth. Mod. Phys.11 (2014) 1460004 [arXiv:1308.1208] [INSPIRE].

  70. [70]

    A. Maleknejad, M.M. Sheikh-Jabbari and J. Soda, Gauge Fields and Inflation, Phys. Rept.528 (2013) 161 [arXiv:1212.2921] [INSPIRE].

  71. [71]

    B. Vakili, A late time accelerated FRW model with scalar and vector fields via Noether symmetry, Phys. Lett.B 738 (2014) 488 [arXiv:1410.3131] [INSPIRE].

  72. [72]

    I. Sakalli and A. Övgün, Quantum Tunneling of Massive Spin-1 Particles From Non-stationary Metrics, Gen. Rel. Grav.48 (2016) 1 [arXiv:1507.01753] [INSPIRE].

  73. [73]

    M.-a. Watanabe, S. Kanno and J. Soda, Inflationary Universe with Anisotropic Hair, Phys. Rev. Lett.102 (2009) 191302 [arXiv:0902.2833] [INSPIRE].

  74. [74]

    C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman, San Francisco (1973) [INSPIRE].

  75. [75]

    J.D. Barrow, R. Maartens and C.G. Tsagas, Cosmology with inhomogeneous magnetic fields, Phys. Rept.449 (2007) 131 [astro-ph/0611537] [INSPIRE].

  76. [76]

    B. Tajahmad, Reconstruction of F (T ) gravity in homogeneous backgrounds, arXiv:1812.10339 [INSPIRE].

  77. [77]

    B. Tajahmad, Raychaudhuri-based reconstruction of anisotropic Einstein-Maxwell equation in 1+3 covariant formalism of f (R)-gravity, arXiv:2001.03613 [INSPIRE].

  78. [78]

    B. Tajahmad, A new approach to the analysis of the reconstruction methods, phase space and exact solutions of the alternative theories of gravity, arXiv:1812.03317 [INSPIRE].

  79. [79]

    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].

  80. [81]

    S. Capozziello and G. Lambiase, Selection rules in minisuperspace quantum cosmology, Gen. Rel. Grav.32 (2000) 673 [gr-qc/9912083] [INSPIRE].

  81. [82]

    D.A. Craig and J.B. Hartle, Generalized quantum theory of recollapsing homogeneous cosmologies, Phys. Rev.D 69 (2004) 123525 [gr-qc/0309117] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Behzad Tajahmad.

Additional information

ArXiv ePrint: 1905.07724

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tajahmad, B. Late-time-accelerated expansion arisen from gauge fields in an anisotropic background and a fruitful trick for Noether’s approach. J. High Energ. Phys. 2020, 84 (2020).

Download citation


  • Cosmology of Theories beyond the SM
  • Classical Theories of Gravity