\( T\overline{T},J\overline{T},T\overline{J} \) partition sums from string theory

Abstract

We calculate the torus partition sum of a general CFT2 with left and right moving conserved currents J and \( \overline{J} \), perturbed by a combination of the irrelevant operators \( T\overline{T},J\overline{T} \) and \( T\overline{J} \). We use string theory techniques to write it as an integral transform of the partition sum of the unperturbed CFT with chemical potentials for the left and right moving conserved charges. The resulting expression transforms in the right way under the modular group, and reproduces the known spectrum of these models. We also derive a formula for the partition function of deformed CFT2 with non-vanishing chemical potentials.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, \( T\overline{T} \)-deformed 2D Quantum Field Theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].

  3. [3]

    M. Guica, An integrable Lorentz-breaking deformation of two-dimensional CFTs, SciPost Phys. 5 (2018) 048 [arXiv:1710.08415] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    S. Chakraborty, A. Giveon and D. Kutasov, \( J\overline{T} \) deformed CFT2 and string theory, JHEP 10 (2018) 057 [arXiv:1806.09667] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    L. Apolo and W. Song, Strings on warped AdS3 via \( T\overline{J} \) deformations, JHEP 10 (2018) 165 [arXiv:1806.10127] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    B. Le Floch and M. Mezei, Solving a family of \( T\overline{T} \)-like theories, arXiv:1903.07606 [INSPIRE].

  7. [7]

    S. Chakraborty, A. Giveon and D. Kutasov, \( T\overline{T},J\overline{T},T\overline{J} \) and String Theory, J. Phys. A 52 (2019) 384003 [arXiv:1905.00051] [INSPIRE].

  8. [8]

    O. Aharony, S. Datta, A. Giveon, Y. Jiang and D. Kutasov, Modular invariance and uniqueness of \( T\overline{T} \) deformed CFT, JHEP 01 (2019) 086 [arXiv:1808.02492] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    J. Cardy, The \( T\overline{T} \) deformation of quantum field theory as random geometry, JHEP 10 (2018) 186 [arXiv:1801.06895] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    S. Dubovsky, V. Gorbenko and G. Hernández-Chifflet, \( T\overline{T} \) partition function from topological gravity, JHEP 09 (2018) 158 [arXiv:1805.07386] [INSPIRE].

  11. [11]

    S. Datta and Y. Jiang, \( T\overline{T} \) deformed partition functions, JHEP 08 (2018) 106 [arXiv:1806.07426] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    O. Aharony, S. Datta, A. Giveon, Y. Jiang and D. Kutasov, Modular covariance and uniqueness of \( J\overline{T} \) deformed CFTs, JHEP 01 (2019) 085 [arXiv:1808.08978] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    A. Giveon, N. Itzhaki and D. Kutasov, \( T\overline{T} \) and LST, JHEP 07 (2017) 122 [arXiv:1701.05576] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    A. Giveon, N. Itzhaki and D. Kutasov, A solvable irrelevant deformation of AdS3/CFT2, JHEP 12 (2017) 155 [arXiv:1707.05800] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS3 , Adv. Theor. Math. Phys. 2 (1998) 733 [hep-th/9806194] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  16. [16]

    D. Kutasov and N. Seiberg, More comments on string theory on AdS3 , JHEP 04 (1999) 008 [hep-th/9903219] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    D. Kutasov, Geometry on the Space of Conformal Field Theories and Contact Terms, Phys. Lett. B 220 (1989) 153 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    A. Giveon, D. Kutasov and O. Pelc, Holography for noncritical superstrings, JHEP 10 (1999) 035 [hep-th/9907178] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string. Cambridge University Press (1998) [INSPIRE].

  20. [20]

    A. Hashimoto and D. Kutasov, Strings, Symmetric Products, \( T\overline{T} \) deformations and Hecke Operators, arXiv:1909.11118 [INSPIRE].

  21. [21]

    A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept. 244 (1994) 77 [hep-th/9401139] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Akikazu Hashimoto.

Additional information

ArXiv ePrint: 1907.07221

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, A., Kutasov, D. \( T\overline{T},J\overline{T},T\overline{J} \) partition sums from string theory. J. High Energ. Phys. 2020, 80 (2020). https://doi.org/10.1007/JHEP02(2020)080

Download citation

Keywords

  • Conformal Field Theory
  • Renormalization Group