Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Integration-by-parts reductions of Feynman integrals using Singular and GPI-Space

  • 10 Accesses


We introduce an algebro-geometrically motived integration-by-parts (IBP) re- duction method for multi-loop and multi-scale Feynman integrals, using a framework for massively parallel computations in computer algebra. This framework combines the com- puter algebra system Singular with the workflow management system GPI-Space, which are being developed at the TU Kaiserslautern and the Fraunhofer Institute for Industrial Mathematics (ITWM), respectively. In our approach, the IBP relations are first trimmed by modern tools from computational algebraic geometry and then solved by sparse linear algebra and our new interpolation method. Modelled in terms of Petri nets, these steps are efficiently automatized and automatically parallelized by GPI-Space. We demonstrate the potential of our method at the nontrivial example of reducing two-loop five-point non- planar double-pentagon integrals. We also use GPI-Space to convert the basis of IBP reductions, and discuss the possible simplification of master-integral coefficients in a uni- formly transcendental basis.

A preprint version of the article is available at ArXiv.


  1. [1]

    S. Badger, H. Frellesvig and Y. Zhang, A two-loop five-gluon helicity amplitude in QCD, JHEP12 (2013) 045 [arXiv:1310.1051] [INSPIRE].

  2. [2]

    T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett.116 (2016) 062001 [Erratum ibid.116 (2016) 189903] [arXiv:1511.05409] [INSPIRE].

  3. [3]

    S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, First look at two-loop five-gluon scattering in QCD, Phys. Rev. Lett.120 (2018) 092001 [arXiv:1712.02229] [INSPIRE].

  4. [4]

    S. Abreu et al., Planar two-loop five-gluon amplitudes from numerical unitarity, Phys. Rev.D 97 (2018) 116014 [arXiv:1712.03946] [INSPIRE].

  5. [5]

    S. Abreu et al., The two-loop five-point amplitude in 𝒩 = 4 super-Yang-Mills theory, Phys. Rev. Lett.122 (2019) 121603 [arXiv:1812.08941] [INSPIRE].

  6. [6]

    S. Abreu et al., Planar two-loop five-parton amplitudes from numerical unitarity, JHEP11 (2018) 116 [arXiv:1809.09067] [INSPIRE].

  7. [7]

    R.H. Boels, Q. Jin and H. Lüo, Efficient integrand reduction for particles with spin, arXiv:1802.06761 [INSPIRE].

  8. [8]

    T. Gehrmann, J.M. Henn and N.A. Lo Presti, Pentagon functions for massless planar scattering amplitudes, JHEP10 (2018) 103 [arXiv:1807.09812] [INSPIRE].

  9. [9]

    S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, Analytic helicity amplitudes for two-loop five-gluon scattering: the single-minus case, JHEP01 (2019) 186 [arXiv:1811.11699] [INSPIRE].

  10. [10]

    S. Abreu et al., Analytic form of planar two-loop five-gluon scattering amplitudes in QCD, Phys. Rev. Lett.122 (2019) 082002 [arXiv:1812.04586] [INSPIRE].

  11. [11]

    D. Chicherin et al., Analytic result for a two-loop five-particle amplitude, Phys. Rev. Lett.122 (2019) 121602 [arXiv:1812.11057] [INSPIRE].

  12. [12]

    D. Chicherin et al., The two-loop five-particle amplitude in 𝒩 = 8 supergravity, JHEP03 (2019) 115 [arXiv:1901.05932] [INSPIRE].

  13. [13]

    S. Abreu et al., The two-loop five-point amplitude in 𝒩 = 8 supergravity, JHEP03 (2019) 123 [arXiv:1901.08563] [INSPIRE].

  14. [14]

    S. Abreu et al., Analytic Form of the Planar Two-Loop Five-Parton Scattering Amplitudes in QCD, JHEP05 (2019) 084 [arXiv:1904.00945] [INSPIRE].

  15. [15]

    H.B. Hartanto et al., A numerical evaluation of planar two-loop helicity amplitudes for a W -boson plus four partons, JHEP09 (2019) 119 [arXiv:1906.11862] [INSPIRE].

  16. [16]

    Y. Zhang, Integrand-level reduction of loop amplitudes by computational algebraic geometry methods, JHEP09 (2012) 042 [arXiv:1205.5707] [INSPIRE].

  17. [17]

    P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Scattering amplitudes from multivariate polynomial division, Phys. Lett.B 718 (2012) 173 [arXiv:1205.7087] [INSPIRE].

  18. [18]

    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

  19. [19]

    J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys.A 48 (2015) 153001 [arXiv:1412.2296] [INSPIRE].

  20. [20]

    H. Ita, Two-loop integrand decomposition into master integrals and surface terms, Phys. Rev.94 (2016) 116015 [arXiv:1510.05626] [INSPIRE].

  21. [21]

    S. Abreu et al., Two-loop four-gluon amplitudes from numerical unitarity, Phys. Rev. Lett.119 (2017) 142001 [arXiv:1703.05273] [INSPIRE].

  22. [22]

    L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP11 (2011) 023 [arXiv:1108.4461] [INSPIRE].

  23. [23]

    L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP12 (2013) 049 [arXiv:1308.2276] [INSPIRE].

  24. [24]

    L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP10 (2014) 065 [arXiv:1408.1505] [INSPIRE].

  25. [25]

    S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a Five-Loop Amplitude Using Steinmann Relations, Phys. Rev. Lett.117 (2016) 241601 [arXiv:1609.00669] [INSPIRE].

  26. [26]

    L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function, JHEP01 (2016) 053 [arXiv:1509.08127] [INSPIRE].

  27. [27]

    L.J. Dixon et al., Heptagons from the Steinmann cluster bootstrap, JHEP02 (2017) 137 [arXiv:1612.08976] [INSPIRE].

  28. [28]

    D. Chicherin, J. Henn and V. Mitev, Bootstrapping pentagon functions, JHEP05 (2018) 164 [arXiv:1712.09610] [INSPIRE].

  29. [29]

    S. Caron-Huot et al., Six-Gluon amplitudes in planar 𝒩 = 4 super-Yang-Mills theory at six and seven loops, JHEP08 (2019) 016 [arXiv:1903.10890] [INSPIRE].

  30. [30]

    A. von Manteuffel and R.M. Schabinger, A novel approach to integration by parts reduction, Phys. Lett.B 744 (2015) 101 [arXiv:1406.4513] [INSPIRE].

  31. [31]

    T. Peraro, Scattering amplitudes over finite fields and multivariate functional reconstruction, JHEP12 (2016) 030 [arXiv:1608.01902] [INSPIRE].

  32. [32]

    J. Klappert and F. Lange, Reconstructing rational functions with FireFly, Comput. Phys. Commun.247 (2020) 106951 [arXiv:1904.00009] [INSPIRE].

  33. [33]

    T. Peraro, FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs, JHEP07 (2019) 031 [arXiv:1905.08019] [INSPIRE].

  34. [34]

    K. Chetyrkin and F. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys.B 192 (1981) 159.

  35. [35]

    S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

  36. [36]

    A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP10 (2008) 107 [arXiv:0807.3243] [INSPIRE].

  37. [37]

    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun.189 (2015) 182 [arXiv:1408.2372] [INSPIRE].

  38. [38]

    A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with modular arithmetic, arXiv:1901.07808 [INSPIRE].

  39. [39]

    P. Maierhöfer, J. Usovitsch and P. Uwer, Kira — A Feynman integral reduction program, Comput. Phys. Commun.230 (2018) 99 [arXiv:1705.05610] [INSPIRE].

  40. [40]

    P. Maierhöfer and J. Usovitsch, Kira 1.2 release notes, arXiv:1812.01491 [INSPIRE].

  41. [41]

    A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman integral reduction, arXiv:1201.4330 [INSPIRE].

  42. [42]

    J. Gluza, K. Kajda and D.A. Kosower, Towards a basis for planar two-loop integrals, Phys. Rev.D 83 (2011) 045012 [arXiv:1009.0472] [INSPIRE].

  43. [43]

    R.M. Schabinger, A new algorithm for the generation of unitarity-compatible integration by parts relations, JHEP01 (2012) 077 [arXiv:1111.4220] [INSPIRE].

  44. [44]

    K.J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic geometry, Phys. Rev.D 93 (2016) 041701 [arXiv:1511.01071] [INSPIRE].

  45. [45]

    Z. Bern, M. Enciso, H. Ita and M. Zeng, Dual conformal symmetry, integration-by-parts reduction, differential equations and the nonplanar sector, Phys. Rev.D 96 (2017) 096017 [arXiv:1709.06055] [INSPIRE].

  46. [46]

    R.N. Lee and A.A. Pomeransky, Critical points and number of master integrals, JHEP11 (2013) 165 [arXiv:1308.6676] [INSPIRE].

  47. [47]

    A. Georgoudis, K.J. Larsen and Y. Zhang, Azurite: an algebraic geometry based package for finding bases of loop integrals, Comput. Phys. Commun.221 (2017) 203 [arXiv:1612.04252] [INSPIRE].

  48. [48]

    T. Bitoun, C. Bogner, R.P. Klausen and E. Panzer, Feynman integral relations from parametric annihilators, Lett. Math. Phys.109 (2019) 497 [arXiv:1712.09215] [INSPIRE].

  49. [49]

    H.A. Chawdhry, M.A. Lim and A. Mitov, Two-loop five-point massless QCD amplitudes within the integration-by-parts approach, Phys. Rev.D 99 (2019) 076011 [arXiv:1805.09182] [INSPIRE].

  50. [50]

    S. Badger et al., Analytic form of the full two-loop five-gluon all-plus helicity amplitude, Phys. Rev. Lett.123 (2019) 071601 [arXiv:1905.03733] [INSPIRE].

  51. [51]

    D.A. Kosower, Direct solution of integration-by-parts systems, Phys. Rev.D 98 (2018) 025008 [arXiv:1804.00131] [INSPIRE].

  52. [52]

    P. Mastrolia and S. Mizera, Feynman integrals and intersection theory, JHEP02 (2019) 139 [arXiv:1810.03818] [INSPIRE].

  53. [53]

    H. Frellesvig et al., Decomposition of Feynman integrals on the maximal cut by intersection numbers, JHEP05 (2019) 153 [arXiv:1901.11510] [INSPIRE].

  54. [54]

    H. Frellesvig et al., Vector space of Feynman integrals and multivariate intersection numbers, Phys. Rev. Lett.123 (2019) 201602 [arXiv:1907.02000] [INSPIRE].

  55. [55]

    X. Liu and Y.-Q. Ma, Determining arbitrary Feynman integrals by vacuum integrals, Phys. Rev.D 99 (2019) 071501 [arXiv:1801.10523] [INSPIRE].

  56. [56]

    X. Liu, Y.-Q. Ma and C.-Y. Wang, A systematic and efficient method to compute multi-loop master integrals, Phys. Lett.779 (2018) 353 [arXiv:1711.09572] [INSPIRE].

  57. [57]

    Y. Wang, Z. Li and N. Ul Basat, Direct reduction of amplitude, arXiv:1901.09390 [INSPIRE].

  58. [58]

    A. Kardos, A new reduction strategy for special negative sectors of planar two-loop integrals without Laporta algorithm, arXiv:1812.05622 [INSPIRE].

  59. [59]

    Y. Zhang, Lecture notes on multi-loop integral reduction and applied algebraic geometry, arXiv:1612.02249 [INSPIRE].

  60. [60]

    J. Böhm et al., Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections, JHEP09 (2018) 024 [arXiv:1805.01873] [INSPIRE].

  61. [61]

    J. Böhm et al., Complete sets of logarithmic vector fields for integration-by-parts identities of Feynman integrals, Phys. Rev.D 98 (2018) 025023 [arXiv:1712.09737] [INSPIRE].

  62. [62]

    W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 4-1-1 — A computer algebra system for polynomial computations, http://www.singular.uni-kl.de (2018).

  63. [63]

    F.J. Pfreundt and M. Rahn, GPI-Space, Fraunhofer ITWM Kaiserslautern, http://www.gpi-space.de/ (2018).

  64. [64]

    P. Wasser, Analytic properties of Feynman integrals for scattering amplitudes, M.Sc. thesis,Johannes Gutenberg-Universität Mainz, Mainz, Germany (2016).

  65. [65]

    P.A. Baikov, Explicit solutions of the three loop vacuum integral recurrence relations, Phys. Lett.B 385 (1996) 404 [hep-ph/9603267] [INSPIRE].

  66. [66]

    R.N. Lee, Modern techniques of multiloop calculations, in the proceedings of the 49thRencontres de Moriond on QCD and High Energy Interactions, March 22–29, La Thuile, Italy (2014), arXiv:1405.5616 [INSPIRE].

  67. [67]

    The_SpaSM_group, SpaSM: a Sparse direct Solver Modulo p, v1.2 ed., http://github.com/cbouilla/spasm (2017).

  68. [68]

    E.W. Mayr and A.R. Meyer, The complexity of the word problems for commutative semigroups and polynomial ideals, Adv. Math.46 (1982) 305.

  69. [69]

    J. Böhm et al., Towards massively parallel computations in algebraic geometry, arXiv:1808.09727.

  70. [70]

    C. Jordan, M. Joswig and L. Kastner, Parallel enumeration of triangulations, Electron. J. Combin.25 (2018) 27.

  71. [71]

    M. Rahn, GPI-Space whitepaper, Fraunhofer ITWM Kaiserslautern, http://gpi-space.com/wp-content/uploads/2014/06/GPISpaceWhitepaper.pdf (2014).

  72. [72]

    L. Ristau, Using Petri nets to parallelize algebraic algorithms, Ph.D. Thesis, TU Kaiserslautern, Kaiserslautern, Germany (2019).

  73. [73]

    C. Reinbold, Computation of the GIT-fan using a massively parallel implementation, Master’s Thesis (2018).

  74. [74]

    D. Bendle, Massively parallel computation of tropical varieties, Bachelor’s Thesis (2018).

  75. [75]

    Z. Bern et al., Logarithmic singularities and maximally supersymmetric amplitudes, JHEP06 (2015) 202 [arXiv:1412.8584] [INSPIRE].

  76. [76]

    D. Chicherin et al., All master integrals for three-jet production at next-to-next-to-leading order, Phys. Rev. Lett.123 (2019) 041603 [arXiv:1812.11160] [INSPIRE].

  77. [77]

    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local integrals for planar scattering amplitudes, JHEP06 (2012) 125 [arXiv:1012.6032] [INSPIRE].

  78. [78]

    D. Chicherin et al., Analytic result for the nonplanar hexa-box integrals, JHEP03 (2019) 042 [arXiv:1809.06240] [INSPIRE].

  79. [79]

    J. Lykke Jacobsen, Y. Jiang and Y. Zhang, Torus partition function of the six-vertex model from algebraic geometry, JHEP03 (2019) 152 [arXiv:1812.00447] [INSPIRE].

  80. [80]

    Y. Jiang and Y. Zhang, Algebraic geometry and Bethe ansatz. Part I. The quotient ring for BAE, JHEP03 (2018) 087 [arXiv:1710.04693] [INSPIRE].

  81. [81]

    R. Zippel, Probabilistic algorithms for sparse polynomials, in International Symposium on Symbolic and Algebraic Manipulation, E.W. Ng ed., Lecture Notes in Computer Science volume 72, Springer, Germany (1979).

  82. [82]

    M. Ben Or and P. Tiwari, A deterministic algorithm for sparse multivariate polynomial interpolation, in the proceedings of the 20thannual ACM symposium on Theory of computing (STOC’88), Chicago, U.S.A. (1988).

  83. [83]

    E. Kaltofen, W.S. Lee and A. Lobo, Early Termination in Ben-Or/Tiwari Sparse Interpolation and a Hybrid of Zippel’s Algorithm*, in the proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC01), London, Canada (2001).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Yang Zhang.

Additional information

ArXiv ePrint: 1908.04301

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bendle, D., Böhm, J., Decker, W. et al. Integration-by-parts reductions of Feynman integrals using Singular and GPI-Space. J. High Energ. Phys. 2020, 79 (2020). https://doi.org/10.1007/JHEP02(2020)079

Download citation


  • Scattering Amplitudes
  • Differential and Algebraic Geometry