Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On-shell constructibility of Born amplitudes in spontaneously broken gauge theories


We perform a comprehensive study of on-shell recursion relations for Born amplitudes in spontaneously broken gauge theories and identify the minimal shifts required to construct amplitudes with a given particle content and spin quantum numbers. We show that two-line or three-line shifts are sufficient to construct all amplitudes with five or more particles, apart from amplitudes involving longitudinal vector bosons or scalars, which may require at most five-line shifts. As an application, we revisit selection rules for multi-boson amplitudes using on-shell recursion and little-group transformations.

A preprint version of the article is available at ArXiv.


  1. [1]

    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys.B 715 (2005) 499 [hep-th/0412308] [INSPIRE].

  2. [2]

    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett.94 (2005) 181602 [hep-th/0501052] [INSPIRE].

  3. [3]

    P. Benincasa and F. Cachazo, Consistency Conditions on the S-matrix of Massless Particles, arXiv:0705.4305 [INSPIRE].

  4. [4]

    T. Cohen, H. Elvang and M. Kiermaier, On-shell constructibility of tree amplitudes in general field theories, JHEP04 (2011) 053 [arXiv:1010.0257] [INSPIRE].

  5. [5]

    C. Cheung, C.-H. Shen and J. Trnka, Simple Recursion Relations for General Field Theories, JHEP06 (2015) 118 [arXiv:1502.05057] [INSPIRE].

  6. [6]

    C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, On-Shell Recursion Relations for Effective Field Theories, Phys. Rev. Lett.116 (2016) 041601 [arXiv:1509.03309] [INSPIRE].

  7. [7]

    N. Craig, H. Elvang, M. Kiermaier and T. Slatyer, Massive amplitudes on the Coulomb branch of \( \mathcal{N} \) = 4 SYM, JHEP12 (2011) 097 [arXiv:1104.2050] [INSPIRE].

  8. [8]

    R.H. Boels and C. Schwinn, On-shell supersymmetry for massive multiplets, Phys. Rev.D 84 (2011) 065006 [arXiv:1104.2280] [INSPIRE].

  9. [9]

    G. Chen and K.G. Savvidy, Spinor formalism for massive fields with half-integral spin, Eur. Phys. J.C 72 (2012) 1952 [arXiv:1105.3851] [INSPIRE].

  10. [10]

    E. Conde and A. Marzolla, Lorentz Constraints on Massive Three-Point Amplitudes, JHEP09 (2016) 041 [arXiv:1601.08113] [INSPIRE].

  11. [11]

    N. Arkani-Hamed, T.-C. Huang and Y.-t. Huang, Scattering Amplitudes For All Masses and Spins, arXiv:1709.04891 [INSPIRE].

  12. [12]

    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Uniqueness of spontaneously broken gauge theories, Phys. Rev. Lett.30 (1973) 1268 [Erratum ibid.31 (1973) 572] [INSPIRE].

  13. [13]

    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the s Matrix, Phys. Rev.D 10 (1974) 1145 [Erratum ibid.D 11 (1975) 972] [INSPIRE].

  14. [14]

    C.H. Llewellyn Smith, High-Energy Behavior and Gauge Symmetry, Phys. Lett.46B (1973) 233 [INSPIRE].

  15. [15]

    N. Christensen and B. Field, Constructive standard model, Phys. Rev.D 98 (2018) 016014 [arXiv:1802.00448] [INSPIRE].

  16. [16]

    N. Christensen, B. Field, A. Moore and S. Pinto, 2-, 3- and 4-Body Decays in the Constructive Standard Model, arXiv:1909.09164 [INSPIRE].

  17. [17]

    G. Durieux, T. Kitahara, Y. Shadmi and Y. Weiss, The electroweak effective field theory from on-shell amplitudes, JHEP01 (2020) 119 [arXiv:1909.10551] [INSPIRE].

  18. [18]

    S.D. Badger, E.W.N. Glover, V.V. Khoze and P. Svrček, Recursion relations for gauge theory amplitudes with massive particles, JHEP07 (2005) 025 [hep-th/0504159] [INSPIRE].

  19. [19]

    S.D. Badger, E.W.N. Glover and V.V. Khoze, Recursion relations for gauge theory amplitudes with massive vector bosons and fermions, JHEP01 (2006) 066 [hep-th/0507161] [INSPIRE].

  20. [20]

    D. Forde and D.A. Kosower, All-multiplicity amplitudes with massive scalars, Phys. Rev.D 73 (2006) 065007 [hep-th/0507292] [INSPIRE].

  21. [21]

    P. Ferrario, G. Rodrigo and P. Talavera, Compact multigluonic scattering amplitudes with heavy scalars and fermions, Phys. Rev. Lett.96 (2006) 182001 [hep-th/0602043] [INSPIRE].

  22. [22]

    K.J. Ozeren and W.J. Stirling, Scattering amplitudes with massive fermions using BCFW recursion, Eur. Phys. J.C 48 (2006) 159 [hep-ph/0603071] [INSPIRE].

  23. [23]

    C. Schwinn and S. Weinzierl, On-shell recursion relations for all Born QCD amplitudes, JHEP04 (2007) 072 [hep-ph/0703021] [INSPIRE].

  24. [24]

    N. Arkani-Hamed and J. Kaplan, On Tree Amplitudes in Gauge Theory and Gravity, JHEP04 (2008) 076 [arXiv:0801.2385] [INSPIRE].

  25. [25]

    K. Risager, A direct proof of the CSW rules, JHEP12 (2005) 003 [hep-th/0508206] [INSPIRE].

  26. [26]

    F. Coradeschi and P. Lodone, Selection rules for helicity amplitudes in massive gauge theories, Phys. Rev.D 87 (2013) 074026 [arXiv:1211.1880] [INSPIRE].

  27. [27]

    R. Kleiss and W.J. Stirling, Spinor Techniques for Calculating \( p\overline{p}\to {W}^{\pm }/{Z}^0 \)+ Jets, Nucl. Phys.B 262 (1985) 235 [INSPIRE].

  28. [28]

    S. Dittmaier, Weyl-van der Waerden formalism for helicity amplitudes of massive particles, Phys. Rev.D 59 (1998) 016007 [hep-ph/9805445] [INSPIRE].

  29. [29]

    A. Ochirov, Helicity amplitudes for QCD with massive quarks, JHEP04 (2018) 089 [arXiv:1802.06730] [INSPIRE].

  30. [30]

    R. Aoude and C.S. Machado, The Rise of SMEFT On-shell Amplitudes, JHEP12 (2019) 058 [arXiv:1905.11433] [INSPIRE].

  31. [31]

    G. Chalmers and W. Siegel, Simplifying algebra in Feynman graphs. 3. Massive vectors, Phys. Rev.D 63 (2001) 125027 [hep-th/0101025] [INSPIRE].

  32. [32]

    A. Herderschee, S. Koren and T. Trott, Constructing \( \mathcal{N} \) = 4 Coulomb branch superamplitudes, JHEP08 (2019) 107 [arXiv:1902.07205] [INSPIRE].

  33. [33]

    C. Schwinn and S. Weinzierl, Scalar diagrammatic rules for Born amplitudes in QCD, JHEP05 (2005) 006 [hep-th/0503015] [INSPIRE].

  34. [34]

    B.W. Lee, C. Quigg and H.B. Thacker, Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass, Phys. Rev.D 16 (1977) 1519 [INSPIRE].

  35. [35]

    M.S. Chanowitz and M.K. Gaillard, The TeV Physics of Strongly Interacting W’s and Z’s, Nucl. Phys.B 261 (1985) 379 [INSPIRE].

  36. [36]

    R.H. Boels, No triangles on the moduli space of maximally supersymmetric gauge theory, JHEP05 (2010) 046 [arXiv:1003.2989] [INSPIRE].

  37. [37]

    A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev.D 95 (2017) 065014 [arXiv:1607.05236] [INSPIRE].

  38. [38]

    Y. Shadmi and Y. Weiss, Effective Field Theory Amplitudes the On-Shell Way: Scalar and Vector Couplings to Gluons, JHEP02 (2019) 165 [arXiv:1809.09644] [INSPIRE].

  39. [39]

    T. Ma, J. Shu and M.-L. Xiao, Standard Model Effective Field Theory from On-shell Amplitudes, arXiv:1902.06752 [INSPIRE].

  40. [40]

    C. Cheung, On-Shell Recursion Relations for Generic Theories, JHEP03 (2010) 098 [arXiv:0808.0504] [INSPIRE].

  41. [41]

    M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept.200 (1991) 301 [hep-th/0509223] [INSPIRE].

  42. [42]

    L.J. Dixon, Calculating scattering amplitudes efficiently, in QCD and beyond. Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics, TASI-95, Boulder, U.S.A., June 4–30, 1995, pp. 539–584, 1996, hep-ph/9601359 [INSPIRE].

  43. [43]

    C. Schwinn and S. Weinzierl, SUSY ward identities for multi-gluon helicity amplitudes with massive quarks, JHEP03 (2006) 030 [hep-th/0602012] [INSPIRE].

  44. [44]

    L. Rodina, Uniqueness from locality and BCFW shifts, JHEP09 (2019) 078 [arXiv:1612.03885] [INSPIRE].

  45. [45]

    N. Moynihan and J. Murugan, Comments on scattering in massive gravity, vDVZ and BCFW, Class. Quant. Grav.35 (2018) 155005 [arXiv:1711.03956] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Christian Schwinn.

Additional information

ArXiv ePrint: 1910.13407

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Franken, R., Schwinn, C. On-shell constructibility of Born amplitudes in spontaneously broken gauge theories. J. High Energ. Phys. 2020, 73 (2020).

Download citation


  • Scattering Amplitudes
  • Spontaneous Symmetry Breaking