Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Generalization of QCD3 symmetry-breaking and flavored quiver dualities


We extend the recently proposed symmetry breaking scenario of QCD3 to the so-called “master” (2 + 1)d bosonization duality, which has bosonic and fermionic matter on both ends. Using anomaly arguments, a phase diagram emerges with several novel regions. We then construct 2+1 dimensional dualities for flavored quivers using node-by-node dualization. Such dualities are applicable to theories which live on domain walls in QCD4-like theories with dynamical quarks. We also derive dualities for quivers based on orthogonal and symplectic gauge groups. Lastly, we support the conjectured dualities using holographic constructions, even though several aspects of this holographic construction remain mostly qualitative.

A preprint version of the article is available at ArXiv.


  1. [1]

    O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP02 (2016) 093 [arXiv:1512.00161] [INSPIRE].

  2. [2]

    S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons Theory with Vector Fermion Matter, Eur. Phys. J.C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].

  3. [3]

    O. Aharony, G. Gur-Ari and R. Yacoby, d = 3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories, JHEP03 (2012) 037 [arXiv:1110.4382] [INSPIRE].

  4. [4]

    S. Minwalla and S. Yokoyama, Chern Simons Bosonization along RG Flows, JHEP02 (2016) 103 [arXiv:1507.04546] [INSPIRE].

  5. [5]

    O. Aharony, G. Gur-Ari and R. Yacoby, Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions, JHEP12 (2012) 028 [arXiv:1207.4593] [INSPIRE].

  6. [6]

    S. Jain, M. Mandlik, S. Minwalla, T. Takimi, S.R. Wadia and S. Yokoyama, Unitarity, Crossing Symmetry and Duality of the S-matrix in large N Chern-Simons theories with fundamental matter, JHEP04 (2015) 129 [arXiv:1404.6373] [INSPIRE].

  7. [7]

    K. Inbasekar, S. Jain, S. Mazumdar, S. Minwalla, V. Umesh and S. Yokoyama, Unitarity, crossing symmetry and duality in the scattering of \( \mathcal{N} \) = 1 SUSY matter Chern-Simons theories, JHEP10 (2015) 176 [arXiv:1505.06571] [INSPIRE].

  8. [8]

    G. Gur-Ari, S.A. Hartnoll and R. Mahajan, Transport in Chern-Simons-Matter Theories, JHEP07 (2016) 090 [arXiv:1605.01122] [INSPIRE].

  9. [9]

    A. Karch and D. Tong, Particle-Vortex Duality from 3d Bosonization, Phys. Rev.X 6 (2016) 031043 [arXiv:1606.01893] [INSPIRE].

  10. [10]

    N. Seiberg, T. Senthil, C. Wang and E. Witten, A Duality Web in 2+1 Dimensions and Condensed Matter Physics, Annals Phys.374 (2016) 395 [arXiv:1606.01989] [INSPIRE].

  11. [11]

    M.E. Peskin, Mandelstam ’t Hooft Duality in Abelian Lattice Models, Annals Phys.113 (1978) 122 [INSPIRE].

  12. [12]

    C. Dasgupta and B.I. Halperin, Phase Transition in a Lattice Model of Superconductivity, Phys. Rev. Lett.47 (1981) 1556 [INSPIRE].

  13. [13]

    D.T. Son, Is the Composite Fermion a Dirac Particle?, Phys. Rev.X 5 (2015) 031027 [arXiv:1502.03446] [INSPIRE].

  14. [14]

    F. Benini, P.-S. Hsin and N. Seiberg, Comments on global symmetries, anomalies and duality in (2 + 1)d, JHEP04 (2017) 135 [arXiv:1702.07035] [INSPIRE].

  15. [15]

    K. Aitken, A. Baumgartner, A. Karch and B. Robinson, 3d Abelian Dualities with Boundaries, JHEP03 (2018) 053 [arXiv:1712.02801] [INSPIRE].

  16. [16]

    K. Aitken, A. Karch and B. Robinson, Master 3d Bosonization Duality with Boundaries, JHEP05 (2018) 124 [arXiv:1803.08507] [INSPIRE].

  17. [17]

    S. Kachru, M. Mulligan, G. Torroba and H. Wang, Nonsupersymmetric dualities from mirror symmetry, Phys. Rev. Lett.118 (2017) 011602 [arXiv:1609.02149] [INSPIRE].

  18. [18]

    G. Gur-Ari and R. Yacoby, Three Dimensional Bosonization From Supersymmetry, JHEP11 (2015) 013 [arXiv:1507.04378] [INSPIRE].

  19. [19]

    S. Jain, S. Minwalla and S. Yokoyama, Chern Simons duality with a fundamental boson and fermion, JHEP11 (2013) 037 [arXiv:1305.7235] [INSPIRE].

  20. [20]

    D.F. Mross, J. Alicea and O.I. Motrunich, Symmetry and duality in bosonization of two-dimensional Dirac fermions, Phys. Rev.X 7 (2017) 041016 [arXiv:1705.01106] [INSPIRE].

  21. [21]

    C.-M. Jian, Z. Bi and Y.-Z. You, Lattice Construction of Duality with Non-Abelian Gauge Fields in 2 + 1D, Phys. Rev.B 100 (2019) 075109 [arXiv:1806.04155] [INSPIRE].

  22. [22]

    J.-Y. Chen, J.H. Son, C. Wang and S. Raghu, Exact Boson-Fermion Duality on a 3D Euclidean Lattice, Phys. Rev. Lett.120 (2018) 016602 [arXiv:1705.05841] [INSPIRE].

  23. [23]

    J.H. Son, J.-Y. Chen and S. Raghu, Duality Web on a 3D Euclidean Lattice and Manifestation of Hidden Symmetries, JHEP06 (2019) 038 [arXiv:1811.11367] [INSPIRE].

  24. [24]

    J.-Y. Chen and M. Zimet, Strong-Weak Chern-Simons-Matter Dualities from a Lattice Construction, JHEP08 (2018) 015 [arXiv:1806.04141] [INSPIRE].

  25. [25]

    Z. Komargodski and N. Seiberg, A symmetry breaking scenario for QCD3 , JHEP01 (2018) 109 [arXiv:1706.08755] [INSPIRE].

  26. [26]

    K. Jensen, A master bosonization duality, JHEP01 (2018) 031 [arXiv:1712.04933] [INSPIRE].

  27. [27]

    F. Benini, Three-dimensional dualities with bosons and fermions, JHEP02 (2018) 068 [arXiv:1712.00020] [INSPIRE].

  28. [28]

    D. Gaiotto, Z. Komargodski and N. Seiberg, Time-reversal breaking in QCD4, walls and dualities in 2 + 1 dimensions, JHEP01 (2018) 110 [arXiv:1708.06806] [INSPIRE].

  29. [29]

    K. Aitken, A. Baumgartner and A. Karch, Novel 3d bosonic dualities from bosonization and holography, JHEP09 (2018) 003 [arXiv:1807.01321] [INSPIRE].

  30. [30]

    K. Jensen and A. Karch, Bosonizing three-dimensional quiver gauge theories, JHEP11 (2017) 018 [arXiv:1709.01083] [INSPIRE].

  31. [31]

    K. Jensen and A. Karch, Embedding three-dimensional bosonization dualities into string theory, JHEP12 (2017) 031 [arXiv:1709.07872] [INSPIRE].

  32. [32]

    E. Witten, Theta dependence in the large N limit of four-dimensional gauge theories, Phys. Rev. Lett.81 (1998) 2862 [hep-th/9807109] [INSPIRE].

  33. [33]

    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys.2 (1998) 505 [hep-th/9803131] [INSPIRE].

  34. [34]

    T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys.113 (2005) 843 [hep-th/0412141] [INSPIRE].

  35. [35]

    R. Argurio, M. Bertolini, F. Bigazzi, A.L. Cotrone and P. Niro, QCD domain walls, Chern-Simons theories and holography, JHEP09 (2018) 090 [arXiv:1806.08292] [INSPIRE].

  36. [36]

    R. Argurio, M. Bertolini, F. Mignosa and P. Niro, Charting the phase diagram of QCD3, JHEP08 (2019) 153 [arXiv:1905.01460] [INSPIRE].

  37. [37]

    A. Baumgartner, Phases of flavor broken QCD3 , JHEP10 (2019) 288 [arXiv:1905.04267] [INSPIRE].

  38. [38]

    B.S. Acharya and C. Vafa, On domain walls of N = 1 supersymmetric Yang-Mills in four-dimensions, hep-th/0103011 [INSPIRE].

  39. [39]

    M. Dierigl and A. Pritzel, Topological Model for Domain Walls in (Super-)Yang-Mills Theories, Phys. Rev.D 90 (2014) 105008 [arXiv:1405.4291] [INSPIRE].

  40. [40]

    M. Fujita, W. Li, S. Ryu and T. Takayanagi, Fractional Quantum Hall Effect via Holography: Chern-Simons, Edge States and Hierarchy, JHEP06 (2009) 066 [arXiv:0901.0924] [INSPIRE].

  41. [41]

    O. Aharony, F. Benini, P.-S. Hsin and N. Seiberg, Chern-Simons-matter dualities with SO and USp gauge groups, JHEP02 (2017) 072 [arXiv:1611.07874] [INSPIRE].

  42. [42]

    T. Imoto, T. Sakai and S. Sugimoto, O(Nc) and USp(Nc) QCD from String Theory, Prog. Theor. Phys.122 (2010) 1433 [arXiv:0907.2968] [INSPIRE].

  43. [43]

    J. Gomis, Z. Komargodski and N. Seiberg, Phases Of Adjoint QCD3And Dualities, SciPost Phys.5 (2018) 007 [arXiv:1710.03258] [INSPIRE].

  44. [44]

    C. Cordova, P.-S. Hsin and N. Seiberg, Global Symmetries, Counterterms and Duality in Chern-Simons Matter Theories with Orthogonal Gauge Groups, SciPost Phys.4 (2018) 021 [arXiv:1711.10008] [INSPIRE].

  45. [45]

    C. Choi, D. Delmastro, J. Gomis and Z. Komargodski, Dynamics of QCD3with Rank-Two Quarks And Duality, arXiv:1810.07720 [INSPIRE].

  46. [46]

    C. Córdova, P.-S. Hsin and K. Ohmori, Exceptional Chern-Simons-Matter Dualities, SciPost Phys.7 (2019) 056 [arXiv:1812.11705] [INSPIRE].

  47. [47]

    A. Armoni, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Metastable vacua in large-N QCD3 , JHEP01 (2020) 004 [arXiv:1905.01797] [INSPIRE].

  48. [48]

    C. Choi, M. Roček and A. Sharon, Dualities and Phases of 3D N = 1 SQCD, JHEP10 (2018) 105 [arXiv:1808.02184] [INSPIRE].

  49. [49]

    V. Bashmakov, F. Benini, S. Benvenuti and M. Bertolini, Living on the walls of super-QCD, SciPost Phys.6 (2019) 044 [arXiv:1812.04645] [INSPIRE].

  50. [50]

    A. Karasik and Z. Komargodski, The Bi-Fundamental Gauge Theory in 3 + 1 Dimensions: The Vacuum Structure and a Cascade, JHEP05 (2019) 144 [arXiv:1904.09551] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Andrew Baumgartner.

Additional information

ArXiv ePrint: 1906.08785

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aitken, K., Baumgartner, A., Choi, C. et al. Generalization of QCD3 symmetry-breaking and flavored quiver dualities. J. High Energ. Phys. 2020, 60 (2020).

Download citation


  • Duality in Gauge Field Theories
  • Topological Field Theories
  • Spontaneous Symmetry Breaking
  • AdS-CFT Correspondence