Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Localization of effective actions in heterotic string field theory

  • 14 Accesses

Abstract

We consider the algebraic couplings in the tree level effective action of the heterotic string. We show how these couplings can be computed from closed string field theory. When the light fields we are interested in are charged under an underlying \( \mathcal{N} \) = 2 R-charge in the left-moving sector, their quartic effective potential localizes at the boundary of the worldsheet moduli space, in complete analogy to the previously studied open string case. In particular we are able to compute the quartic closed string field theory potential without resorting to any explicit expression for the 3- and the 4-strings vertices but only using the L relations between them. As a non trivial example we show how the heterotic Yang-Mills quartic potential arises in this way.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Faroogh Moosavian, A. Sen and M. Verma, Superstring field theory with open and closed strings, JHEP01 (2020) 183 [arXiv: 1907 .10632] [INSPIRE].

  2. [2]

    H. Kunitomo and T. Sugimoto, Heterotic string field theory with cyclic Lstructure, PTEP2019 (2019) 063B02 [arXiv:1902. 02991] [INSPIRE].

  3. [3]

    T. Erler, Superstring field theory and the Wess-Zumino- Witten action, JHEP10 (2017) 057 [arXiv: 1706 .02629] [INSPIRE].

  4. [4]

    S. Konopka and I. Sachs, Open superstring field theory on the restricted Hilbert space, JHEP04 (2016) 164 [arXiv:1602.02583] [INSPIRE].

  5. [5]

    T. Erler, Y. Okawa and T. Takezaki, Complete action for open superstring field theory with cyclic Astructure, JHEP 08 (2016) 012 [arXiv: 1602. 02582] [INSPIRE].

  6. [6]

    A. Sen, BV master action for heterotic and type II string field theories, JHEP02 (2016) 087 [arXiv: 1508 .05387] [INSPIRE].

  7. [7]

    H. Kunitomo andY. Okawa, Complete action for open superstring field theory, PTEP2016 (2016) 023B01 [arXiv:1508. 00366] [INSPIRE].

  8. [8]

    T. Erler and C. Maccaferri, String field theory solution for any open string background. Part II, JHEP01 (2020) 021 [arXiv:1909. 11675] [INSPIRE].

  9. [9]

    J. Vosmera, Generali zed ADHM equations from marginal deformations in open superstring field theory, JHEP12 (2019) 118 [arXiv:1910 .00538] [INSPIRE].

  10. [10]

    L. Mattiello and I. Sachs, On finite-size D-branes in superstring theory, JHEP11 (2019) 118 [arXiv: 1902 .10955] [INSPIRE].

  11. [11]

    C. Maccaferri and A. Merlano, Localization of effective actions in open superstring field theory: small Hilbert space, JHEP06 (2019) 101 [arXiv: 1905. 04958] [INSPIRE].

  12. [12]

    C. Maccaferri and A. Merlano, Localization of effective actions in open superstring field theory, JHEP03 (2018) 112 [arXiv:1801.07607] [INSPIRE].

  13. [13]

    T. Erler, C. Maccaferri and R. Noris, Taming boundary condition changing operator anomalies with the tachyon vacuum, JHEP06 (2019) 027 [arXiv:1901.08038] [INSPIRE].

  14. [14]

    T. Erler, T. Masuda and M. Schnabl, Rolling near the tachyon vacuum, arXiv:1902.11103 [INSPIRE].

  15. [15]

    M. Kudrna and M. Schnabl, Universal solutions in open string field theory, arXiv: 1812 . 03221 [INSPIRE].

  16. [16]

    M. Cho, S. Collier and X. Yin, Strings in Ramond-Ramond backgrounds from the Neveu-Schwar z-Ramond formalism, arXiv:1811.00032 [INSPIRE].

  17. [17]

    T. Kojita, C. Maccaferri, T. Masuda and M. Schnabl, Topological defects in open string field theory , JHEP 04 (2018) 057 [arXiv: 1612. 01997] [INSPIRE].

  18. [18]

    M. Kudrna and C. Maccaferri, BCFT moduli space in level truncation, JHEP04 (2016) 057 [arXiv: 1601. 04046] [INSPIRE].

  19. [19]

    C. Maccaferri and M. Schnabl, Large BCFT moduli in open string field theory, JHEP 08 (2015) 149 [arXiv:1506. 03723] [INSPIRE].

  20. [20]

    T. Erler and C. Maccaferri, String field theory solution for any open string background, JHEP 10 (2014) 029 [arXiv:1406.3021] [INSPIRE].

  21. [21]

    C. Maccaferri, A simple solution for marginal deformations in open string field theory, JHEP 05 (2014) 004 [arXiv:1402 .3546] [INSPIRE].

  22. [22]

    M. Kudrna, M. Rapcak and M. Schnabl, Ising model conformal boundary conditions from open string field theory, arXiv:1401. 7980 [INSPIRE].

  23. [23]

    T. Erler, Analytic solution for tachyon condensation in Berkovits' open superstring field theory, JHEP 11 (2013) 007 [arXiv:1308.4400] [INSPIRE].

  24. [24]

    M. Kudrna, C. Maccaferri and M. Schnabl, Boundary state from Ellwood invariants, JHEP 07 (2013) 033 [arXiv:1207.4785] [INSPIRE].

  25. [25]

    T. Erler and C. Maccaferri, Connecting solutions in open string field theory with singular gauge transformations, JHEP 04 (2012) 107 [arXiv:1201. 5119] [INSPIRE].

  26. [26]

    M. Murata and M. Schnabl, Multibrane solutions in open string field theory, JHEP 07 (2012) 063 [arXiv:1112 . 0591] [INSPIRE].

  27. [27]

    H. Hata and T. Kojita, Winding number in string field theory, JHEP01 (2012) 088 [arXiv: 1111. 2389] [INSPIRE].

  28. [28]

    M. Kiermaier, Y. Okawa and P. Soler, Solutions from boundary condition changing operators in open string field theory, JHEP 03 (2011) 122 [arXiv:1009 . 6185] [INSPIRE].

  29. [29]

    L. Bonora, C. Maccaferri and D.D. Tolla, Relevant deformations in open string field theory: a simple solution for lumps, JHEP 11 (2011) 107 [arXiv:1009. 4158] [INSPIRE].

  30. [30]

    M. Schnabl, Analytic solution for tachyon condensation in open string field theory, Adv. Theor. Math. Phys.10(2006) 433 [hep-th /0511286] [INSPIRE].

  31. [31]

    A. Sen, String field theory as world-sheet UV regulator, JHEP 10 (2019) 119 [arXiv: 1902 . 00263] [INSPIRE].

  32. [32]

    C. De Lacroix, H. Erbin and A. Sen, Analyticity and crossing symmetry of superstring loop amplitudes, JHEP 05 (2019) 139 [arXiv: 1810 . 07197] [INSPIRE].

  33. [33]

    A. Sen, Background independence of closed superstring field theory, JHEP 02 (2018) 155 [arXiv: 1711. 08468] [INSPIRE].

  34. [34]

    A. Sen, Wilsonian effective action of superstring theory, JHEP 01 (2017) 108 [arXiv: 1609 . 00459] [INSPIRE].

  35. [35]

    A. Sen, Unitarity of superstring field theory, J HEP12 (2016) 115 [arXiv: 1607 . 08244] [INSPIRE].

  36. [36]

    A. Sen, One loop mass renormalization of unstable particles in superstring theory, JHEP11 (2016) 050 [arXiv:1607 . 06500] [INSPIRE].

  37. [37]

    R. Pius and A. Sen, Cutkosky rules for superstring field theory, JHEP10 (2016) 024 [Errat um ibid. 09 (2018) 122] [arXiv :1604 . 01783] [INSPIRE].

  38. [38]

    A. Sen, Supersymmetry restoration in superstring perturbation theory, JHEP 12 (2015) 075 [arXiv: 1508 . 02481] [INSPIRE].

  39. [39]

    A. Sen, Gauge invariant lPI effective superstring field theory: inclusion of the Ramond sector, JHEP08 (2015) 025 [arXiv: 1501.00988] [INSPIRE].

  40. [40]

    A. Sen, Gauge invariant lPI effective action for superstring field theory, JHEP06 (2015) 022 [arXiv:1411.7478] [INSPIRE].

  41. [41]

    A. Sen, Off-shell amplitudes in superstring theory, Fortsch. Phys.63 (2015) 149 [arXiv: 1408 .0571] [INSPIRE].

  42. [42]

    T. Erler, Four lectures on analytic solutions in open string field theory, arXiv:1912.00521 [INSPIRE].

  43. [43]

    C. de Lacroix, H. Erbin, S.P. Kashyap, A. Sen and M. Verma, Closed superstring field theory and its applications, Int. J. Mod. Phys.A 32 (2017) 1730021 [arXiv:1703.06410] [INSPIRE].

  44. [44]

    T. Erler, Four lectures on closed string field theory, arXiv: 1905.06785 [INSPIRE].

  45. [45]

    M. Cho, Open-closed hyperbolic string vertices, arXiv: 1912 .00030 [INSPIRE].

  46. [46]

    S.F. Moosavian andY. Zhou, On the existence of heterotic-string and type-II-superstring field theory vertices, arXiv:1911.04343 [INSPIRE].

  47. [47]

    K. Costello and B. Zwiebach, Hyperbolic string vertices, arXiv: 1909.00033 [INSPIRE].

  48. [48]

    M. Headrick and B. Zwiebach, Convex programs for minimal-area problems, arXiv: 1806 . 00449 [INSPIRE].

  49. [49]

    S.F. Moosavian and R. Pius, Hyperbolic geometry and closed bosonic string field theory. Part II. The rules for evaluating the quantum BV master action, JHEP08 (2019) 177 [arXiv: 1708 . 04977] [INSPIRE].

  50. [50]

    S.F. Moosavian and R. Pius, Hyperbolic geometry and closed bosonic string field theory. Part I. The string vertices via hyperbolic Riemann surfaces, JHEP08 (2019) 157 [arXiv: 1706 .07366] [INSPIRE].

  51. [51]

    D.J. Gross and J.H. Sloan, The quartic effective action for the heterotic string, Nucl. Phys.B 291 (1987) 41 [INSPIRE].

  52. [52]

    E.A. Bergshoeff and M. de Roo, The quartic effective action of the heterotic string and supersymmetry, Nucl. Ph ys.B 328 (1989) 439 [INSPIRE].

  53. [53]

    Y. Cai and C.A. Núñez, Heterotic string covariant amplitudes and low-energy effective action, Nucl. Phys.B 287 (1987) 279 [INSPIRE].

  54. [54]

    Y. Okawa and B. Zwiebach, Heterotic string field theory, JHEP07 (2004) 042 [hep-th/0406212] [INSPIRE].

  55. [55]

    N. Berkovits, Y. Okawa and B. Zwiebach, WZW-like action for heterotic string field theory, JHEP11 (2004) 038 [hep-th/0409018] [INSPIRE].

  56. [56]

    B. Zwiebach, Closed string field theory: quantum action and the B- V master equation, Nucl. Phys.B 390 (1993) 33 [hep-th /9206084] [INSPIRE].

  57. [57]

    N. Berkovits and M. Schnabl, Yang-Mills action from open superstring field theory, JHEP09 (2003) 022 [hep-th/0307019] [INSPIRE].

  58. [58]

    N. Berkovits, Super-Poincaré invariant superstring field theory, Nucl. Phys.B 450 (1995) 90 [ Erratum ibid .B 459 (1996) 439] [hep-th /9503099] [INSPIRE].

  59. [59]

    M. Asano and M. Kato, Supersymmetric extended string field theory in NSnsector and NSn-1-R sector, Nucl. Phys.B 910 (2016) 178 [arXiv:1603 .04213] [INSPIRE].

  60. [60]

    H. Erbin, C. Maccaferri, M. Schnabl and J. Vošmera, Algebraic structures in SFT effective actions, to appear.

  61. [61]

    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal invariance, supersymmetry and string theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].

  62. [62]

    T. Banks, L.J. Dixon, D. Friedan and E.J. Martinec, Phenomenology and conformal field theory or can string theory predict the weak mixing angle?, Nucl. Phys. B 299 (1988) 613 [INSPIRE].

  63. [63]

    M. Schnabl, Wedge states in string field theory, JHEP 01 (2003) 004 [hep-th/0201095] [INSPIRE].

  64. [64]

    M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Holomorphic anomalies in topological field theories, Nucl. Phys. B 405 (1993) 279 [hep-th/9302103] [INSPIRE].

  65. [65]

    M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311 [hep-th/9309140] [INSPIRE].

  66. [66]

    I. Antoniadis, E. Gava, K.S. Narain and T.R. Taylor, Topological amplitudes in string theory, Nucl. Phys. B 413 (1994) 162 [hep-th/9307158] [INSPIRE].

  67. [67]

    0. Bergman and B. Zwiebach, The dilaton theorem and closed string backgrounds, Nucl. Phys. B 441 (1995) 76 [hep-th/9411047] [INSPIRE].

  68. [68]

    H. Yang and B. Zwiebach, Dilaton deformations in closed string field theory, JHEP 05 (2005) 032 [hep-th/0502161] [INSPIRE].

  69. [69]

    I. Ellwood, The closed string tadpole in open string field theory, JHEP 08 (2008) 063 [arXiv: 0804 .1131] [INSPIRE].

  70. [70]

    C. Maccaferri and J. Vošmera, Localization of open-closed couplings in open superstring field theory, in preparation.

  71. [71]

    A. Recknagel and V. Schomerus, Boundary deformation theory and moduli spaces of D-branes, Nucl. Phys. B 545 (1999) 233 [hep-th/9811237] [INSPIRE].

  72. [72]

    T. Erler, S. Konopka and I. Sachs, NS-NS sector of closed superstring field theory, JHEP 08 (2014) 158 [arXiv:1403.0940] [INSPIRE].

  73. [73]

    T. Erler, Relating Berkovits and Asuperstring field theories; small Hilbert space perspective, JHEP 10 (2015) 157 [arXiv: 1505 .02069] [INSPIRE].

  74. [74]

    T. Erler, Relating Berkovits and Asuperstring field theories; large Hilbert space perspective, JHEP 02 (2016) 121 [arXiv:1510 .00364] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Carlo Maccaferri.

Additional information

ArXiv ePrint: 1912.05463

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Erbin, H., Maccaferri, C. & Vošmera, J. Localization of effective actions in heterotic string field theory. J. High Energ. Phys. 2020, 59 (2020). https://doi.org/10.1007/JHEP02(2020)059

Download citation

Keywords

  • String Field Theory
  • Superstrings and Heterotic Strings