Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Subsystem distance after a local operator quench

  • 15 Accesses

Abstract

We investigate the time evolution of the subsystem trace distance and Schatten distances after local operator quenches in two-dimensional conformal field theory (CFT) and in one-dimensional quantum spin chains. We focus on the case of a subsystem being an interval embedded in the infinite line. The initial state is prepared by inserting a local operator in the ground state of the theory. We only consider the cases in which the inserted local operator is a primary field or a sum of several primaries. While a nonchiral primary operator can excite both left-moving and right-moving quasiparticles, a holomorphic primary operator only excites a right-moving quasiparticle and an anti-holomorphic primary operator only excites a left-moving one. The reduced density matrix (RDM) of an interval hosting a quasiparticle is orthogonal to the RDM of the interval without any quasiparticles. Moreover, the RDMs of two intervals hosting quasiparticles at different positions are also orthogonal to each other. We calculate numerically the entanglement entropy, Rényi entropy, trace distance, and Schatten distances in time-dependent states excited by different local operators in the critical Ising and XX spin chains. These results match the CFT predictions in the proper limit.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    L. Amico, R. Fazio, A. Osterloh and V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys.80 (2008) 517 [quant-ph/0703044] [INSPIRE].

  2. [2]

    P. Calabrese, J. Cardy and B. Doyon, Entanglement entropy in extended quantum systems, J. Phys.A 42 (2009) 500301

  3. [3]

    N. Laflorencie, Quantum entanglement in condensed matter systems, Phys. Rept.646 (2016) 1 [arXiv:1512.03388] [INSPIRE].

  4. [4]

    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE].

  5. [5]

    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP08 (2006) 045 [hep-th/0605073] [INSPIRE].

  6. [6]

    T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys.A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

  7. [7]

    M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, 10th anniversary edition, Cambridge University Press, Cambridge U.K. (2010).

  8. [8]

    J. Watrous, The theory of quantum information, Cambridge University Press, Cambridge U.K. (2018).

  9. [9]

    M. Fagotti and F.H. Essler, Reduced density matrix after a quantum quench, Phys. Rev.B 87 (2013) 245107 [arXiv:1302.6944].

  10. [10]

    J. Zhang, P. Ruggiero and P. Calabrese, Subsystem trace distance in quantum field theory, Phys. Rev. Lett.122 (2019) 141602 [arXiv:1901.10993] [INSPIRE].

  11. [11]

    J. Zhang, P. Ruggiero and P. Calabrese, Subsystem trace distance in low-lying states of (1 + 1)-dimensional conformal field theories, JHEP10 (2019) 181 [arXiv:1907.04332] [INSPIRE].

  12. [12]

    M. Nozaki, T. Numasawa and T. Takayanagi, Quantum entanglement of local operators in conformal field theories, Phys. Rev. Lett.112 (2014) 111602 [arXiv:1401.0539] [INSPIRE].

  13. [13]

    M. Nozaki, Notes on quantum entanglement of local operators, JHEP10 (2014) 147 [arXiv:1405.5875] [INSPIRE].

  14. [14]

    S. He, T. Numasawa, T. Takayanagi and K. Watanabe, Quantum dimension as entanglement entropy in two dimensional conformal field theories, Phys. Rev.D 90 (2014) 041701 [arXiv:1403.0702] [INSPIRE].

  15. [15]

    P. Calabrese and J. Cardy, Quantum quenches in 1 + 1 dimensional conformal field theories, J. Stat. Mech.1606 (2016) 064003 [arXiv:1603.02889] [INSPIRE].

  16. [16]

    P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech.04 (2005) P04010, [cond-mat/0503393].

  17. [17]

    P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett.96 (2006) 136801 [cond-mat/0601225] [INSPIRE].

  18. [18]

    P. Calabrese and J. Cardy, Entanglement and correlation functions following a local quench: a conformal field theory approach, J. Stat. Mech.0710 (2007) P10004 [arXiv:0708.3750] [INSPIRE].

  19. [19]

    J.M. Stéphan and J. Dubail, Local quantum quenches in critical one-dimensional systems: entanglement, the Loschmidt echo, and light-cone effects, J. Stat. Mech.08 (2011) P08019 [arXiv:1105.4846].

  20. [20]

    T. Shimaji, T. Takayanagi and Z. Wei, Holographic quantum circuits from splitting/joining local quenches, JHEP03 (2019) 165 [arXiv:1812.01176] [INSPIRE].

  21. [21]

    A. Kleine et al., Spin-charge separation in two-component Bose-gases, Phys. Rev.A 77 (2008) 013607 [arXiv:0706.0709].

  22. [22]

    P. Caputa, M. Nozaki and T. Takayanagi, Entanglement of local operators in large-N conformal field theories, PTEP2014 (2014) 093B06 [arXiv:1405.5946] [INSPIRE].

  23. [23]

    P. Caputa, J. Simón, A. Štikonas and T. Takayanagi, Quantum entanglement of localized excited states at finite temperature, JHEP01 (2015) 102 [arXiv:1410.2287] [INSPIRE].

  24. [24]

    J. de Boer et al., Higher spin entanglement and WNconformal blocks, JHEP07 (2015) 168 [arXiv:1412.7520] [INSPIRE].

  25. [25]

    W.-Z. Guo and S. He, Rényi entropy of locally excited states with thermal and boundary effect in 2D CFTs, JHEP04 (2015) 099 [arXiv:1501.00757] [INSPIRE].

  26. [26]

    B. Chen, W.-Z. Guo, S. He and J.-Q. Wu, Entanglement entropy for descendent local operators in 2D CFTs, JHEP10 (2015) 173 [arXiv:1507.01157] [INSPIRE].

  27. [27]

    M. Nozaki, T. Numasawa and S. Matsuura, Quantum entanglement of fermionic local operators, JHEP02 (2016) 150 [arXiv:1507.04352] [INSPIRE].

  28. [28]

    P. Caputa and A. Veliz-Osorio, Entanglement constant for conformal families, Phys. Rev.D 92 (2015) 065010 [arXiv:1507.00582] [INSPIRE].

  29. [29]

    J.R. David, S. Khetrapal and S.P. Kumar, Universal corrections to entanglement entropy of local quantum quenches, JHEP08 (2016) 127 [arXiv:1605.05987] [INSPIRE].

  30. [30]

    M. Nozaki and N. Watamura, Quantum entanglement of locally excited states in Maxwell theory, JHEP12 (2016) 069 [arXiv:1606.07076] [INSPIRE].

  31. [31]

    P. Caputa and M.M. Rams, Quantum dimensions from local operator excitations in the Ising model, J. Phys.A 50 (2017) 055002 [arXiv:1609.02428] [INSPIRE].

  32. [32]

    P. Caputa, Y. Kusuki, T. Takayanagi and K. Watanabe, Evolution of entanglement entropy in orbifold CFTs, J. Phys.A 50 (2017) 244001 [arXiv:1701.03110] [INSPIRE].

  33. [33]

    M. Nozaki and N. Watamura, Correspondence between entanglement growth and probability distribution of quasiparticles, Phys. Rev.D 96 (2017) 025019 [arXiv:1703.06589] [INSPIRE].

  34. [34]

    Y. Kusuki and T. Takayanagi, Renyi entropy for local quenches in 2D CFT from numerical conformal blocks, JHEP01 (2018) 115 [arXiv:1711.09913] [INSPIRE].

  35. [35]

    P. Caputa et al., Double local quenches in 2D CFTs and gravitational force, JHEP09 (2019) 018 [arXiv:1905.08265] [INSPIRE].

  36. [36]

    Y. Kusuki and M. Miyaji, Entanglement entropy after double-excitation as interaction measure, arXiv:1908.03351 [INSPIRE].

  37. [37]

    A. Bhattacharyya, T. Takayanagi and K. Umemoto, Universal local operator quenches and entanglement entropy, JHEP11 (2019) 107 [arXiv:1909.04680] [INSPIRE].

  38. [38]

    P. Calabrese and J. Cardy, Quantum quenches in extended systems, J. Stat. Mech.0706 (2007) P06008 [arXiv:0704.1880] [INSPIRE].

  39. [39]

    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

  40. [40]

    P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys.A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].

  41. [41]

    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys.B 241 (1984) 333 [INSPIRE].

  42. [42]

    P.W. Anderson, Infrared catastrophe in Fermi gases with local scattering potentials, Phys. Rev. Lett.18 (1967) 1049 [INSPIRE].

  43. [43]

    P.W. Anderson, Ground state of a magnetic impurity in a metal, Phys. Rev.164 (1967) 352.

  44. [44]

    N. Lashkari, Relative entropies in conformal field theory, Phys. Rev. Lett.113 (2014) 051602 [arXiv:1404.3216] [INSPIRE].

  45. [45]

    N. Lashkari, Modular Hamiltonian for excited states in conformal field theory, Phys. Rev. Lett.117 (2016) 041601 [arXiv:1508.03506] [INSPIRE].

  46. [46]

    P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Springer, New York U.S.A. (1997).

  47. [47]

    E.H. Lieb, T. Schultz and D. Mattis, Two soluble models of an antiferromagnetic chain, Annals Phys.16 (1961) 407 [INSPIRE].

  48. [48]

    S. Katsura, Statistical mechanics of the anisotropic linear Heisenberg model, Phys. Rev.127 (1962) 1508.

  49. [49]

    P. Pfeuty, The one-dimensional Ising model with a transverse field, Ann. Phys.57 (1970) 79.

  50. [50]

    M.I. Berganza, F.C. Alcaraz and G. Sierra, Entanglement of excited states in critical spin chians, J. Stat. Mech.1201 (2012) P01016 [arXiv:1109.5673] [INSPIRE].

  51. [51]

    P. Calabrese, F.H. Essler and M. Fagotti, Quantum quench in the transverse field Ising chain: I. Time evolution of order parameter correlators, J. Stat. Mech.07 (2012) P07016 [arXiv:1204.3911].

  52. [52]

    F. Franchini, An introduction to integrable techniques for one-dimensional quantum systems, Lecture Notes in Physics volume 940, Springer, Germany (2017), arXiv:1609.02100.

  53. [53]

    M.-C. Chung and I. Peschel, Density-matrix spectra of solvable fermionic systems, Phys. Rev.B 64 (2001) 064412 [cond-mat/0103301] [INSPIRE].

  54. [54]

    I. Peschel, Calculation of reduced density matrices from correlation functions, J. Phys.A 36 (2003) L 205 [cond-mat/0212631].

  55. [55]

    G. Vidal, J.I. Latorre, E. Rico and A. Kitaev, Entanglement in quantum critical phenomena, Phys. Rev. Lett.90 (2003) 227902 [quant-ph/0211074] [INSPIRE].

  56. [56]

    J.I. Latorre, E. Rico and G. Vidal, Ground state entanglement in quantum spin chains, Quant. Inf. Comput.4 (2004) 48 [quant-ph/0304098] [INSPIRE].

  57. [57]

    V. Eisler and F. Maislinger, Front dynamics in the XY chain after local excitations, arXiv:1909.02841 [INSPIRE].

  58. [58]

    V. Alba, M. Fagotti and P. Calabrese, Entanglement entropy of excited states, J. Stat. Mech.0910 (2009) P10020 [arXiv:0909.1999] [INSPIRE].

  59. [59]

    M. Fagotti and P. Calabrese, Entanglement entropy of two disjoint blocks in XY chains, J. Stat. Mech.1004 (2010) P04016 [arXiv:1003.1110] [INSPIRE].

  60. [60]

    R. Balian and E. Brézin, Nonunitary bogoliubov transformations and extension of wick’s theorem, Nuovo Cim.B 64 (1969) 37 [INSPIRE].

  61. [61]

    J.-M. Stephan and J. Dubail, Local quantum quenches in critical one-dimensional systems: entanglement, the Loschmidt echo, and light-cone effects, J. Stat. Mech.08 (2011) P08019 [arXiv:1105.4846].

  62. [62]

    B. Bertini, Approximate light cone effects in a non-relativistic quantum field theory after a local quench, Phys. Rev.B 95 (2017) 075153 [arXiv:1611.05030] [INSPIRE].

  63. [63]

    V. Eisler and I. Peschel, Evolution of entanglement after a local quench, J. Stat. Mech.06 (2007) P06005 [cond-mat/0703379].

  64. [64]

    V. Eisler, D. Karevski, T. Platini and I. Peschel, Entanglement evolution after connecting finite to infinite quantum chains, J. Stat. Mech.01 (2008) P01023 [arXiv:0711.0289].

  65. [65]

    M. Collura and P. Calabrese, Entanglement evolution across defects in critical anisotropic Heisenberg chains, J. Phys.A 46 (2013) 175001 [arXiv:1302.4274].

  66. [66]

    F. Igloi, G. Roosz and L. Turban, Evolution of the magnetization after a local quench in the critical transverse-field Ising chain, J. Stat. Mech.03 (2014) P03023 [arXiv:1402.1744].

  67. [67]

    R. Vasseur and H. Saleur, Universal entanglement dynamics following a local quench, SciPost Phys.3 (2017) 001 [arXiv:1701.08866] [INSPIRE].

  68. [68]

    A. Coser, E. Tonni and P. Calabrese, Entanglement negativity after a global quantum quench, J. Stat. Mech.1412 (2014) P12017 [arXiv:1410.0900] [INSPIRE].

  69. [69]

    V. Alba and P. Calabrese, Quantum information dynamics in multipartite integrable systems, EPL126 (2019) 60001 [arXiv:1809.09119] [INSPIRE].

  70. [70]

    J. Dubail, Entanglement scaling of operators: a conformal field theory approach, with a glimpse of simulability of long-time dynamics in 1 + 1d, J. Phys.A 50 (2017) 234001 [arXiv:1612.08630] [INSPIRE].

  71. [71]

    V. Alba, J. Dubail and M. Medenjak, Operator entanglement in interacting integrable quantum systems: the case of the rule 54 chain, Phys. Rev. Lett.122 (2019) 250603 [arXiv:1901.04521] [INSPIRE].

  72. [72]

    V. Alba and P. Calabrese, Entanglement and thermodynamics after a quantum quench in integrable systems, PNAS114 (2017) 7947 [arXiv:1608.00614].

  73. [73]

    V. Alba and P. Calabrese, Entanglement dynamics after quantum quenches in generic integrable systems, SciPost Phys.4 (2018) 017 [arXiv:1712.07529] [INSPIRE].

  74. [74]

    Y. Zou, A. Milsted and G. Vidal, Conformal fields and operator product expansion in critical quantum spin chains, Phys. Rev. Lett.124 (2020) 040604 [arXiv:1901.06439] [INSPIRE].

  75. [75]

    Y. Zou and G. Vidal, Emergence of conformal symmetry in quantum spin chains: anti-periodic boundary conditions and supersymmetry, Phys. Rev.B 101 (2020) 045132 [arXiv:1907.10704] [INSPIRE].

  76. [76]

    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].

  77. [77]

    Y. Suzuki, T. Takayanagi and K. Umemoto, Entanglement wedges from information metric in conformal field theories, Phys. Rev. Lett.123 (2019) 221601 [arXiv:1908.09939] [INSPIRE].

  78. [78]

    Y. Kusuki, Y. Suzuki, T. Takayanagi and K. Umemoto, Looking at shadows of entanglement wedges, arXiv:1912.08423 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Jiaju Zhang.

Additional information

ArXiv ePrint: 1911.04797

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Calabrese, P. Subsystem distance after a local operator quench. J. High Energ. Phys. 2020, 56 (2020). https://doi.org/10.1007/JHEP02(2020)056

Download citation

Keywords

  • Conformal Field Theory
  • Lattice Integrable Models