Advertisement

Journal of High Energy Physics

, 2019:77 | Cite as

Prompt neutrinos and intrinsic charm at SHiP

  • Weidong Bai
  • Mary Hall RenoEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We present a new evaluation of the far-forward neutrino plus antineutrino flux and number of events from charm hadron decays in a 400 GeV proton beam dump experiment like the Search for Hidden Particles (SHiP). Using next-to-leading order perturbative QCD and a model for intrinsic charm, we include intrinsic transverse momentum effects and other kinematic angular corrections. We compare this flux to a far-forward flux evaluated with next-to-leading order perturbative QCD, without intrinsic transverse momentum, that used the angular distribution of charm quarks rather than the neutrinos from their decays. The tau neutrino plus antineutrino number of events in the perturbative QCD evaluation is reduced by a factor of about three when intrinsic transverse momentum and the full decay kinematics are included. We show that intrinsic charm contributions can significantly enhance the number of events from neutrinos from charm hadron decays. Measurements of the number of events from tau neutrino plus antineutrino interactions and of the muon charge asymmetry as a function of energy can be used to constrain intrinsic charm models.

Keywords

Heavy Quark Physics Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    SHiP collaboration, A facility to Search for Hidden Particles (SHiP) at the CERN SPS, arXiv:1504.04956 [INSPIRE].
  2. [2]
    S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    DONUT collaboration, Observation of τ neutrino interactions, Phys. Lett. B 504 (2001) 218 [hep-ex/0012035] [INSPIRE].
  4. [4]
    DONuT collaboration, Final τ -neutrino results from the DONuT experiment, Phys. Rev. D 78 (2008) 052002 [arXiv:0711.0728] [INSPIRE].
  5. [5]
    OPERA collaboration, Recent results of the OPERA experiment, AIP Conf. Proc. 1743 (2016) 060004 [INSPIRE].
  6. [6]
    OPERA collaboration, Final results of the OPERA experiment on ν τ appearance in the CNGS neutrino beam, Phys. Rev. Lett. 120 (2018) 211801 [Erratum ibid. 121 (2018) 139901] [arXiv:1804.04912] [INSPIRE].
  7. [7]
    Particle Data Group collaboration, Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  8. [8]
    F.O. Duraes, F.S. Navarra, C.A.A. Nunes and G. Wilk, Leading charm production in the interacting gluon model, Phys. Rev. D 53 (1996) 6136 [hep-ph/9511440] [INSPIRE].
  9. [9]
    T.J. Hobbs, J.T. Londergan and W. Melnitchouk, Phenomenology of nonperturbative charm in the nucleon, Phys. Rev. D 89 (2014) 074008 [arXiv:1311.1578] [INSPIRE].ADSGoogle Scholar
  10. [10]
    R. Maciuła and A. Szczurek, D meson production asymmetry, unfavored fragmentation and consequences for prompt atmospheric neutrino production, Phys. Rev. D 97 (2018) 074001 [arXiv:1711.08616] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S.J. Brodsky, P. Hoyer, C. Peterson and N. Sakai, The intrinsic charm of the proton, Phys. Lett. B 93 (1980) 451.ADSCrossRefGoogle Scholar
  12. [12]
    S.J. Brodsky, C. Peterson and N. Sakai, Intrinsic heavy quark states, Phys. Rev. D 23 (1981) 2745 [INSPIRE].ADSGoogle Scholar
  13. [13]
    R. Vogt and S.J. Brodsky, QCD and intrinsic heavy quark predictions for leading charm and beauty hadroproduction, Nucl. Phys. B 438 (1995) 261 [hep-ph/9405236] [INSPIRE].
  14. [14]
    T. Gutierrez and R. Vogt, Leading charm in hadron nucleus interactions in the intrinsic charm model, Nucl. Phys. B 539 (1999) 189 [hep-ph/9808213] [INSPIRE].
  15. [15]
    F.S. Navarra, M. Nielsen, C.A.A. Nunes and M. Teixeira, On the intrinsic charm component of the nucleon, Phys. Rev. D 54 (1996) 842 [hep-ph/9504388] [INSPIRE].
  16. [16]
    S. Dulat et al., Intrinsic charm parton distribution functions from CTEQ-TEA global analysis, Phys. Rev. D 89 (2014) 073004 [arXiv:1309.0025] [INSPIRE].ADSGoogle Scholar
  17. [17]
    P. Jimenez-Delgado, T.J. Hobbs, J.T. Londergan and W. Melnitchouk, New limits on intrinsic charm in the nucleon from global analysis of parton distributions, Phys. Rev. Lett. 114 (2015) 082002 [arXiv:1408.1708] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T.-J. Hou et al., CT14 intrinsic charm parton distribution functions from CTEQ-TEA global analysis, JHEP 02 (2018) 059 [arXiv:1707.00657] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    F. Carvalho, A.V. Giannini, V.P. Goncalves and F.S. Navarra, D-meson production at very forward rapidities: estimating the intrinsic charm contribution, Phys. Rev. D 96 (2017) 094002 [arXiv:1701.08451] [INSPIRE].ADSGoogle Scholar
  20. [20]
    F. Halzen and L. Wille, Upper limit on forward charm contribution to atmospheric neutrino flux, arXiv:1601.03044 [INSPIRE].
  21. [21]
    F. Halzen and L. Wille, Charm contribution to the atmospheric neutrino flux, Phys. Rev. D 94 (2016) 014014 [arXiv:1605.01409] [INSPIRE].ADSGoogle Scholar
  22. [22]
    R. Laha and S.J. Brodsky, IceCube can constrain the intrinsic charm of the proton, Phys. Rev. D 96 (2017) 123002 [arXiv:1607.08240] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A.V. Giannini, V.P. Gonçalves and F.S. Navarra, Intrinsic charm contribution to the prompt atmospheric neutrino flux, Phys. Rev. D 98 (2018) 014012 [arXiv:1803.01728] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Bhattacharya and J.R. Cudell, Forward charm-production models and prompt neutrinos at IceCube, JHEP 11 (2018) 150 [arXiv:1808.00293] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P. Nason, S. Dawson and R.K. Ellis, The total cross-section for the production of heavy quarks in hadronic collisions, Nucl. Phys. B 303 (1988) 607 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    P. Nason, S. Dawson and R.K. Ellis, The one particle inclusive differential cross-section for heavy quark production in hadronic collisions, Nucl. Phys. B 327 (1989) 49 [Erratum ibid. B 335 (1990) 260] [INSPIRE].
  27. [27]
    M.L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order, Nucl. Phys. B 373 (1992) 295 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Cacciari, M. Greco and P. Nason, The p T spectrum in heavy flavor hadroproduction, JHEP 05 (1998) 007 [hep-ph/9803400] [INSPIRE].
  29. [29]
    M. Cacciari, S. Frixione and P. Nason, The p T spectrum in heavy flavor photoproduction, JHEP 03 (2001) 006 [hep-ph/0102134] [INSPIRE].
  30. [30]
    LEBC-EHS collaboration, Charm hadron properties in 400 GeV/c pp interactions, Z. Phys. C 40 (1988) 321 [INSPIRE].
  31. [31]
    S. Aoki et al., Study of τ-neutrino production at the CERN SPS, arXiv:1708.08700 [INSPIRE].
  32. [32]
    R.E. Nelson, R. Vogt and A.D. Frawley, Narrowing the uncertainty on the total charm cross section and its effect on the J/ψ cross section, Phys. Rev. C 87 (2013) 014908 [arXiv:1210.4610] [INSPIRE].ADSGoogle Scholar
  33. [33]
    K. Kovarik et al., nCTEQ15 — Global analysis of nuclear parton distributions with uncertainties in the CTEQ framework, Phys. Rev. D 93 (2016) 085037 [arXiv:1509.00792] [INSPIRE].ADSGoogle Scholar
  34. [34]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
  35. [35]
    C. Lourenco and H.K. Wohri, Heavy flavour hadro-production from fixed-target to collider energies, Phys. Rept. 433 (2006) 127 [hep-ph/0609101] [INSPIRE].
  36. [36]
    A. Bhattacharya et al., Prompt atmospheric neutrino fluxes: perturbative QCD models and nuclear effects, JHEP 11 (2016) 167 [arXiv:1607.00193] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    K.J. Eskola, P. Paakkinen, H. Paukkunen and C.A. Salgado, EPPS16: nuclear parton distributions with LHC data, Eur. Phys. J. C 77 (2017) 163 [arXiv:1612.05741] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K.J. Eskola, H. Paukkunen and C.A. Salgado, EPS09: a new generation of NLO and LO nuclear parton distribution functions, JHEP 04 (2009) 065 [arXiv:0902.4154] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Charm and bottom production: theoretical results versus experimental data, Nucl. Phys. B 431 (1994) 453 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R. Vogt, Heavy flavor azimuthal correlations in cold nuclear matter, Phys. Rev. C 98 (2018) 034907 [arXiv:1806.01904] [INSPIRE].ADSGoogle Scholar
  41. [41]
    C. Peterson, D. Schlatter, I. Schmitt and P.M. Zerwas, Scaling violations in inclusive e + e annihilation spectra, Phys. Rev. D 27 (1983) 105 [INSPIRE].ADSGoogle Scholar
  42. [42]
    B.A. Kniehl and G. Kramer, Charmed-hadron fragmentation functions from CERN LEP1 revisited, Phys. Rev. D 74 (2006) 037502 [hep-ph/0607306] [INSPIRE].
  43. [43]
    M. Lisovyi, A. Verbytskyi and O. Zenaiev, Combined analysis of charm-quark fragmentation-fraction measurements, EPJ Web Conf. 120 (2016) 03002 [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    P. Schweitzer, T. Teckentrup and A. Metz, Intrinsic transverse parton momenta in deeply inelastic reactions, Phys. Rev. D 81 (2010) 094019 [arXiv:1003.2190] [INSPIRE].ADSGoogle Scholar
  45. [45]
    A.S. Ito et al., Measurement of the continuum of dimuons produced in high-energy proton-nucleus collisions, Phys. Rev. D 23 (1981) 604 [INSPIRE].ADSGoogle Scholar
  46. [46]
    S. Palestini et al., Pion structure as observed in the reaction π Nμ + μ X at 80 GeV/c, Phys. Rev. Lett. 55 (1985) 2649 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    E769 collaboration, Feynman x and transverse momentum dependence of D meson production in 250 GeV π, K and p-nucleon interactions, Phys. Rev. Lett. 77 (1996) 2392 [INSPIRE].
  48. [48]
    R. Ammar et al., D-meson production in 800 GeV/c pp interactions, Phys. Rev. Lett. 61 (1988) 2185 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    SELEX collaboration, Hadronic production of Λc from 600 GeV/c π , Σ and p beams, Phys. Lett. B 528 (2002) 49 [hep-ex/0109017] [INSPIRE].
  50. [50]
    R. Vogt and S.J. Brodsky, Charmed hadron asymmetries in the intrinsic charm coalescence model, Nucl. Phys. B 478 (1996) 311 [hep-ph/9512300] [INSPIRE].
  51. [51]
    R. Enberg, M.H. Reno and I. Sarcevic, Prompt neutrino fluxes from atmospheric charm, Phys. Rev. D 78 (2008) 043005 [arXiv:0806.0418] [INSPIRE].ADSGoogle Scholar
  52. [52]
    A. Bhattacharya et al., Perturbative charm production and the prompt atmospheric neutrino flux in light of RHIC and LHC, JHEP 06 (2015) 110 [arXiv:1502.01076] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    R. Gauld et al., The prompt atmospheric neutrino flux in the light of LHCb, JHEP 02 (2016) 130 [arXiv:1511.06346] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    PROSA collaboration, Prompt neutrino fluxes in the atmosphere with PROSA parton distribution functions, JHEP 05 (2017) 004 [arXiv:1611.03815] [INSPIRE].
  55. [55]
    M. Benzke et al., Prompt neutrinos from atmospheric charm in the general-mass variable-flavor-number scheme, JHEP 12 (2017) 021 [arXiv:1705.10386] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    V.P. Goncalves, R. Maciula and A. Szczurek, From D s± production asymmetry at the LHC to prompt ν τ at IceCube, arXiv:1809.05424 [INSPIRE].
  57. [57]
    NA3 collaboration, Experimental J/ψ hadronic production from 150 GeV/c to 280 GeV/c, Z. Phys. C 20 (1983) 101 [INSPIRE].
  58. [58]
    C.H. Albright and C. Jarlskog, Neutrino production of m + and e + heavy leptons. 1., Nucl. Phys. B 84 (1975) 467 [INSPIRE].
  59. [59]
    S. Kretzer and M.H. Reno, τ neutrino deep inelastic charged current interactions, Phys. Rev. D 66 (2002) 113007 [hep-ph/0208187] [INSPIRE].
  60. [60]
    S. Kretzer and M.H. Reno, Target mass corrections to electroweak structure functions and perturbative neutrino cross-sections, Phys. Rev. D 69 (2004) 034002 [hep-ph/0307023] [INSPIRE].
  61. [61]
    Y.S. Jeong and M.H. Reno, τ neutrino and antineutrino cross sections, Phys. Rev. D 82 (2010) 033010 [arXiv:1007.1966] [INSPIRE].
  62. [62]
    M.H. Reno, Electromagnetic structure functions and neutrino nucleon scattering, Phys. Rev. D 74 (2006) 033001 [hep-ph/0605295] [INSPIRE].
  63. [63]
    M. Bonesini, A. Marchionni, F. Pietropaolo and T. Tabarelli de Fatis, On particle production for high-energy neutrino beams, Eur. Phys. J. C 20 (2001) 13 [hep-ph/0101163] [INSPIRE].
  64. [64]
    E791 collaboration, Total forward and differential cross-sections of neutral D mesons produced in 500 GeV/c π -nucleon interactions, Phys. Lett. B 462 (1999) 225 [hep-ex/9906034] [INSPIRE].
  65. [65]
    H. Dijstra and T. Ruf, Heavy flavour cascade production in a beam dump, SHiP-NOTE=2015-009 (2015).
  66. [66]
    S.M. Barr, T.K. Gaisser, P. Lipari and S. Tilav, Ratio of ν e μ in atmospheric neutrinos, Phys. Lett. B 214 (1988) 147 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    G. Barr, T.K. Gaisser and T. Stanev, Flux of atmospheric neutrinos, Phys. Rev. D 39 (1989) 3532 [INSPIRE].ADSGoogle Scholar
  68. [68]
    T.K. Gaisser, Cosmic rays and particle physics, Cambridge University Press, Cambridge U.K. (1990).Google Scholar
  69. [69]
    K.T. McDonald, An off-axis neutrino beam, hep-ex/0111033 [INSPIRE].
  70. [70]
    W. Ochs, Hadron fragmentation at high-energies and quark constituents, Nucl. Phys. B 118 (1977) 397 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of IowaIowa CityU.S.A.

Personalised recommendations