Journal of High Energy Physics

, 2019:76 | Cite as

Charged rotating black holes in higher dimensions

  • Tomás AndradeEmail author
  • Roberto Emparan
  • David Licht
Open Access
Regular Article - Theoretical Physics


We use a recent implementation of the large D expansion in order to construct the higher-dimensional Kerr-Newman black hole and also new charged rotating black bar solutions of the Einstein-Maxwell theory, all with rotation along a single plane. We describe the space of solutions, obtain their quasinormal modes, and study the appearance of instabilities as the horizons spread along the plane of rotation. Generically, the presence of charge makes the solutions less stable. Instabilities can appear even when the angular momentum of the black hole is small, as long as the charge is sufficiently large. We expect that, although our study is performed in the limit D → ∞, the results provide a good approximation for charged rotating black holes at finite D ≥ 6.


Black Holes Classical Theories of Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    E.T. Newman, R. Couch, K. Chinnapared, A. Exton, A. Prakash and R. Torrence, Metric of a Rotating, Charged Mass, J. Math. Phys. 6 (1965) 918 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    R. Emparan and H.S. Reall, Black Holes in Higher Dimensions, Living Rev. Rel. 11 (2008) 6 [arXiv:0801.3471] [INSPIRE].CrossRefzbMATHGoogle Scholar
  3. [3]
    F.R. Tangherlini, Schwarzschild field in n dimensions and the dimensionality of space problem, Nuovo Cim. 27 (1963) 636 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    R.C. Myers and M.J. Perry, Black Holes in Higher Dimensional Space-Times, Annals Phys. 172 (1986) 304 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    F. Navarro-Lerida, Perturbative Charged Rotating 5D Einstein-Maxwell Black Holes, Gen. Rel. Grav. 42 (2010) 2891 [arXiv:0706.0591] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    M. Allahverdizadeh, J. Kunz and F. Navarro-Lerida, Extremal Charged Rotating Black Holes in Odd Dimensions, Phys. Rev. D 82 (2010) 024030 [arXiv:1004.5050] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    M. Allahverdizadeh, J. Kunz and F. Navarro-Lerida, Extremal Charged Rotating Dilaton Black Holes in Odd Dimensions, Phys. Rev. D 82 (2010) 064034 [arXiv:1007.4250] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M. Ortaggio and V. Pravda, Black rings with a small electric charge: Gyromagnetic ratios and algebraic alignment, JHEP 12 (2006) 054 [gr-qc/0609049] [INSPIRE].
  9. [9]
    J.H. Horne and G.T. Horowitz, Rotating dilaton black holes, Phys. Rev. D 46 (1992) 1340 [hep-th/9203083] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A.N. Aliev, A Slowly rotating charged black hole in five dimensions, Mod. Phys. Lett. A 21 (2006) 751 [gr-qc/0505003] [INSPIRE].
  11. [11]
    A.N. Aliev, Rotating black holes in higher dimensional Einstein-Maxwell gravity, Phys. Rev. D 74 (2006) 024011 [hep-th/0604207] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    B. Chen, P.-C. Li and Z.-z. Wang, Charged Black Rings at large D, JHEP 04 (2017) 167 [arXiv:1702.00886] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  13. [13]
    M.M. Caldarelli, R. Emparan and B. Van Pol, Higher-dimensional Rotating Charged Black Holes, JHEP 04 (2011) 013 [arXiv:1012.4517] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds in Supergravity and String Theory, JHEP 08 (2011) 154 [arXiv:1106.4428] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    J. Armas, J. Gath and N.A. Obers, Electroelasticity of Charged Black Branes, JHEP 10 (2013) 035 [arXiv:1307.0504] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    K. Tanabe, Charged rotating black holes at large D, arXiv:1605.08854 [INSPIRE].
  17. [17]
    M. Mandlik and S. Thakur, Stationary Solutions from the Large D Membrane Paradigm, JHEP 11 (2018) 026 [arXiv:1806.04637] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    S. Kundu and P. Nandi, Large D gravity and charged membrane dynamics with nonzero cosmological constant, JHEP 12 (2018) 034 [arXiv:1806.08515] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    V. Asnin, D. Gorbonos, S. Hadar, B. Kol, M. Levi and U. Miyamoto, High and Low Dimensions in The Black Hole Negative Mode, Class. Quant. Grav. 24 (2007) 5527 [arXiv:0706.1555] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    R. Emparan, R. Suzuki and K. Tanabe, The large D limit of General Relativity, JHEP 06 (2013) 009 [arXiv:1302.6382] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    R. Emparan, R. Suzuki and K. Tanabe, Decoupling and non-decoupling dynamics of large D black holes, JHEP 07 (2014) 113 [arXiv:1406.1258] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    R. Emparan, T. Shiromizu, R. Suzuki, K. Tanabe and T. Tanaka, Effective theory of Black Holes in the 1/D expansion, JHEP 06 (2015) 159 [arXiv:1504.06489] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    R. Emparan, K. Izumi, R. Luna, R. Suzuki and K. Tanabe, Hydro-elastic Complementarity in Black Branes at large D, JHEP 06 (2016) 117 [arXiv:1602.05752] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    S. Bhattacharyya, A. De, S. Minwalla, R. Mohan and A. Saha, A membrane paradigm at large D, JHEP 04 (2016) 076 [arXiv:1504.06613] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  25. [25]
    S. Bhattacharyya, M. Mandlik, S. Minwalla and S. Thakur, A Charged Membrane Paradigm at Large D, JHEP 04 (2016) 128 [arXiv:1511.03432] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  26. [26]
    T. Andrade, R. Emparan and D. Licht, Rotating black holes and black bars at large D, JHEP 09 (2018) 107 [arXiv:1807.01131] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    R. Suzuki and K. Tanabe, Stationary black holes: Large D analysis, JHEP 09 (2015) 193 [arXiv:1505.01282] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    R. Emparan and R.C. Myers, Instability of ultra-spinning black holes, JHEP 09 (2003) 025 [hep-th/0308056] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    Ó.J.C. Dias, P. Figueras, R. Monteiro, J.E. Santos and R. Emparan, Instability and new phases of higher-dimensional rotating black holes, Phys. Rev. D 80 (2009) 111701 [arXiv:0907.2248] [INSPIRE].ADSGoogle Scholar
  30. [30]
    Ó.J.C. Dias, J.E. Santos and B. Way, Rings, Ripples and Rotation: Connecting Black Holes to Black Rings, JHEP 07 (2014) 045 [arXiv:1402.6345] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R. Emparan, P. Figueras and M. Martinez, Bumpy black holes, JHEP 12 (2014) 072 [arXiv:1410.4764] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    R. Emparan, S. Ohashi and T. Shiromizu, No-dipole-hair theorem for higher-dimensional static black holes, Phys. Rev. D 82 (2010) 084032 [arXiv:1007.3847] [INSPIRE].ADSGoogle Scholar
  33. [33]
    R. Emparan, Rotating circular strings, and infinite non-uniqueness of black rings, JHEP 03 (2004) 064 [hep-th/0402149] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Departament de Física Quàntica i Astrofísica, Institut de Ciències del CosmosUniversitat de BarcelonaBarcelonaSpain
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations