The large proper-time expansion of Yang-Mills plasma as a resurgent transseries
Abstract
We show that the late-time expansion of the energy density of \( \mathcal{N} \) = 4 supersymmetric Yang-Mills plasma at infinite coupling undergoing Bjorken flow takes the form of a multi-parameter transseries. Using the AdS/CFT correspondence we find a gravity solution which supplements the well known large proper-time expansion by exponentially-suppressed sectors corresponding to quasinormal modes of the AdS black-brane. The full solution also requires the presence of further sectors which have a natural interpretation as couplings between these modes. The exponentially-suppressed sectors represent nonhydrodynamic contributions to the energy density of the plasma. We use resurgence techniques on the resulting transseries to show that all the information encoded in the nonhydrodynamic sectors can be recovered from the original hydrodynamic gradient expansion.
Keywords
AdS-CFT Correspondence Quark-Gluon Plasma Supersymmetric Gauge TheoryNotes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Supplementary material
References
- [1]W. Florkowski, M.P. Heller and M. Spaliński, New theories of relativistic hydrodynamics in the LHC era, Rept. Prog. Phys. 81 (2018) 046001 [arXiv:1707.02282] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [2]P. Romatschke and U. Romatschke, Relativistic Fluid Dynamics In and Out of Equilibrium — Ten Years of Progress in Theory and Numerical Simulations of Nuclear Collisions, arXiv:1712.05815 [INSPIRE].
- [3]P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].ADSGoogle Scholar
- [4]M.P. Heller, R.A. Janik and P. Witaszczyk, The characteristics of thermalization of boost-invariant plasma from holography, Phys. Rev. Lett. 108 (2012) 201602 [arXiv:1103.3452] [INSPIRE].ADSCrossRefGoogle Scholar
- [5]J. Jankowski, G. Plewa and M. Spaliński, Statistics of thermalization in Bjorken Flow, JHEP 12 (2014) 105 [arXiv:1411.1969] [INSPIRE].ADSCrossRefGoogle Scholar
- [6]M. Spaliński, Small systems and regulator dependence in relativistic hydrodynamics, Phys. Rev. D 94 (2016) 085002 [arXiv:1607.06381] [INSPIRE].ADSGoogle Scholar
- [7]P. Romatschke, Do nuclear collisions create a locally equilibrated quark-gluon plasma?, Eur. Phys. J. C 77 (2017) 21 [arXiv:1609.02820] [INSPIRE].ADSCrossRefGoogle Scholar
- [8]M.P. Heller, R.A. Janik and P. Witaszczyk, Hydrodynamic Gradient Expansion in Gauge Theory Plasmas, Phys. Rev. Lett. 110 (2013) 211602 [arXiv:1302.0697] [INSPIRE].ADSCrossRefGoogle Scholar
- [9]M.P. Heller and M. Spaliński, Hydrodynamics Beyond the Gradient Expansion: Resurgence and Resummation, Phys. Rev. Lett. 115 (2015) 072501 [arXiv:1503.07514] [INSPIRE].ADSCrossRefGoogle Scholar
- [10]P. Romatschke, Relativistic Fluid Dynamics Far From Local Equilibrium, Phys. Rev. Lett. 120 (2018) 012301 [arXiv:1704.08699] [INSPIRE].ADSCrossRefGoogle Scholar
- [11]M. Spaliński, On the hydrodynamic attractor of Yang-Mills plasma, Phys. Lett. B 776 (2018) 468 [arXiv:1708.01921] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [12]J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
- [13]J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [INSPIRE].
- [14]J.D. Bjorken, Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region, Phys. Rev. D 27 (1983) 140 [INSPIRE].ADSGoogle Scholar
- [15]R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev. D 73 (2006) 045013 [hep-th/0512162] [INSPIRE].ADSMathSciNetGoogle Scholar
- [16]J. Casalderrey-Solana, N.I. Gushterov and B. Meiring, Resurgence and Hydrodynamic Attractors in Gauss-Bonnet Holography, JHEP 04 (2018) 042 [arXiv:1712.02772] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [17]R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [18]M.P. Heller, R.A. Janik, M. Spaliński and P. Witaszczyk, Coupling hydrodynamics to nonequilibrium degrees of freedom in strongly interacting quark-gluon plasma, Phys. Rev. Lett. 113 (2014) 261601 [arXiv:1409.5087] [INSPIRE].ADSCrossRefGoogle Scholar
- [19]I. Aniceto and M. Spaliński, Resurgence in Extended Hydrodynamics, Phys. Rev. D 93 (2016) 085008 [arXiv:1511.06358] [INSPIRE].ADSMathSciNetGoogle Scholar
- [20]G.A. Edgar, Transseries for beginners, Real Anal. Exch. 35 (2010) 253 [arXiv:0801.4877].MathSciNetCrossRefzbMATHGoogle Scholar
- [21]I. Aniceto, G. Basar and R. Schiappa, A Primer on Resurgent Transseries and Their Asymptotics, arXiv:1802.10441 [INSPIRE].
- [22]L. Motl and A. Neitzke, Asymptotic black hole quasinormal frequencies, Adv. Theor. Math. Phys. 7 (2003) 307 [hep-th/0301173] [INSPIRE].MathSciNetCrossRefGoogle Scholar
- [23]N. Andersson and C.J. Howls, The Asymptotic quasinormal mode spectrum of nonrotating black holes, Class. Quant. Grav. 21 (2004) 1623 [gr-qc/0307020] [INSPIRE].
- [24]J. Natario and R. Schiappa, On the classification of asymptotic quasinormal frequencies for d-dimensional black holes and quantum gravity, Adv. Theor. Math. Phys. 8 (2004) 1001 [hep-th/0411267] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
- [25]J. Écalle, Les Fonctions Résurgentes, Prépub. Math. Université Paris-Sud 81-05 (1981), 81-06 (1981), 85-05 (1985).Google Scholar
- [26]S. Garoufalidis, A. Its, A. Kapaev and M. Mariño, Asymptotics of the instantons of Painlevé I, Int. Math. Res. Not. 2012 (2012) 561 [arXiv:1002.3634] [INSPIRE].CrossRefzbMATHGoogle Scholar
- [27]I. Aniceto, R. Schiappa and M. Vonk, The Resurgence of Instantons in String Theory, Commun. Num. Theor. Phys. 6 (2012) 339 [arXiv:1106.5922] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
- [28]R. Schiappa and R. Vaz, The Resurgence of Instantons: Multi-Cut Stokes Phases and the Painlevé II Equation, Commun. Math. Phys. 330 (2014) 655 [arXiv:1302.5138] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
- [29]I. Aniceto, The Resurgence of the Cusp Anomalous Dimension, J. Phys. A 49 (2016) 065403 [arXiv:1506.03388] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [30]D. Dorigoni and Y. Hatsuda, Resurgence of the Cusp Anomalous Dimension, JHEP 09 (2015) 138 [arXiv:1506.03763] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [31]G. Arutyunov, D. Dorigoni and S. Savin, Resurgence of the dressing phase for AdS 5 × S 5, JHEP 01 (2017) 055 [arXiv:1608.03797] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
- [32]R. Couso-Santamaría, R. Schiappa and R. Vaz, On asymptotics and resurgent structures of enumerative Gromov-Witten invariants, Commun. Num. Theor. Phys. 11 (2017) 707 [arXiv:1605.07473] [INSPIRE].
- [33]C.M. Bender and T.T. Wu, Anharmonic oscillator. 2: A Study of perturbation theory in large order, Phys. Rev. D 7 (1973) 1620 [INSPIRE].
- [34]M. Mariño, R. Schiappa and M. Weiss, Nonperturbative Effects and the Large-Order Behavior of Matrix Models and Topological Strings, Commun. Num. Theor. Phys. 2 (2008) 349 [arXiv:0711.1954] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
- [35]G. Başar, G.V. Dunne and M. Ünsal, Resurgence theory, ghost-instantons and analytic continuation of path integrals, JHEP 10 (2013) 041 [arXiv:1308.1108] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [36]R. Couso-Santamaría, J.D. Edelstein, R. Schiappa and M. Vonk, Resurgent Transseries and the Holomorphic Anomaly: Nonperturbative Closed Strings in Local ℂℙ2, Commun. Math. Phys. 338 (2015) 285 [arXiv:1407.4821] [INSPIRE].
- [37]G. Başar and G.V. Dunne, Hydrodynamics, resurgence and transasymptotics, Phys. Rev. D 92 (2015) 125011 [arXiv:1509.05046] [INSPIRE].ADSGoogle Scholar
- [38]I. Aniceto, Asymptotics, ambiguities and resurgence, in Resurgence, Physics and Numbers, F. Fauvet, D. Manchon, S. Marmi and D. Sauzin eds., Pisa, pp. 1, Scuola Normale Superiore (2017).Google Scholar
- [39]S. Codesido and M. Mariño, Holomorphic Anomaly and Quantum Mechanics, J. Phys. A 51 (2018) 055402 [arXiv:1612.07687] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [40]S. Demulder, D. Dorigoni and D.C. Thompson, Resurgence in η-deformed Principal Chiral Models, JHEP 07 (2016) 088 [arXiv:1604.07851] [INSPIRE].ADSCrossRefGoogle Scholar
- [41]S. Gukov, M. Mariño and P. Putrov, Resurgence in complex Chern-Simons theory, arXiv:1605.07615 [INSPIRE].
- [42]D. Dorigoni and P. Glass, The grin of Cheshire cat resurgence from supersymmetric localization, SciPost Phys. 4 (2018) 012 [arXiv:1711.04802] [INSPIRE].ADSCrossRefGoogle Scholar
- [43]S. Codesido, M. Mariño and R. Schiappa, Non-Perturbative Quantum Mechanics from Non-Perturbative Strings, arXiv:1712.02603 [INSPIRE].
- [44]R. Balian, G. Parisi and A. Voros, Quartic oscillator, in Marseille Workshop on Feynman Path Integrals, (1978) [INSPIRE].
- [45]J. Zinn-Justin, Perturbation Series at Large Orders in Quantum Mechanics and Field Theories: Application to the Problem of Resummation, Phys. Rept. 70 (1981) 109 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [46]R.A. Janik, Viscous plasma evolution from gravity using AdS/CFT, Phys. Rev. Lett. 98 (2007) 022302 [hep-th/0610144] [INSPIRE].ADSCrossRefGoogle Scholar
- [47]M.P. Heller and R.A. Janik, Viscous hydrodynamics relaxation time from AdS/CFT, Phys. Rev. D 76 (2007) 025027 [hep-th/0703243] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [48]I. Booth, M.P. Heller and M. Spaliński, Black brane entropy and hydrodynamics: The Boost-invariant case, Phys. Rev. D 80 (2009) 126013 [arXiv:0910.0748] [INSPIRE].ADSGoogle Scholar
- [49]M.P. Heller, P. Surowka, R. Loganayagam, M. Spaliński and S.E. Vazquez, Consistent Holographic Description of Boost-Invariant Plasma, Phys. Rev. Lett. 102 (2009) 041601 [arXiv:0805.3774] [INSPIRE].ADSCrossRefGoogle Scholar
- [50]S. Kinoshita, S. Mukohyama, S. Nakamura and K.-y. Oda, A Holographic Dual of Bjorken Flow, Prog. Theor. Phys. 121 (2009) 121 [arXiv:0807.3797] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
- [51]P.M. Chesler and L.G. Yaffe, Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes, JHEP 07 (2014) 086 [arXiv:1309.1439] [INSPIRE].ADSCrossRefGoogle Scholar
- [52]R.A. Janik and R.B. Peschanski, Gauge/gravity duality and thermalization of a boost-invariant perfect fluid, Phys. Rev. D 74 (2006) 046007 [hep-th/0606149] [INSPIRE].ADSGoogle Scholar
- [53]R.A. Janik, G. Plewa, H. Soltanpanahi and M. Spaliński, Linearized nonequilibrium dynamics in nonconformal plasma, Phys. Rev. D 91 (2015) 126013 [arXiv:1503.07149] [INSPIRE].ADSGoogle Scholar
- [54]P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].ADSGoogle Scholar
- [55]P. Grandclement and J. Novak, Spectral methods for numerical relativity, Living Rev. Rel. 12 (2009) 1 [arXiv:0706.2286] [INSPIRE].CrossRefzbMATHGoogle Scholar
- [56]S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
- [57]D. Sauzin, Introduction to 1-Summability and Resurgence, in Divergent Series, Summability and Resurgence I, Lect. Notes Math. 2153 (2016) 121 [arXiv:1405.0356].
- [58]U.D. Jentschura and G. Soff, Improved conformal mapping of the Borel plane, J. Phys. A 34 (2001) 1451 [hep-ph/0006089] [INSPIRE].
- [59]J. Zinn-Justin and U.D. Jentschura, Multi-instantons and exact results II: Specific cases, higher-order effects and numerical calculations, Annals Phys. 313 (2004) 269 [quant-ph/0501137] [INSPIRE].
- [60]E. Caliceti, M. Meyer-Hermann, P. Ribeca, A. Surzhykov and U.D. Jentschura, From useful algorithms for slowly convergent series to physical predictions based on divergent perturbative expansions, Phys. Rept. 446 (2007) 1 [arXiv:0707.1596] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [61]O. Costin and G.V. Dunne, Convergence from Divergence, J. Phys. A 51 (2018) 04LT01 [arXiv:1705.09687] [INSPIRE].
- [62]O. Costin and G. Dunne, in preparation.Google Scholar
- [63]M. Spaliński, Universal behaviour, transients and attractors in supersymmetric Yang-Mills plasma, Phys. Lett. B 784 (2018) 21 [arXiv:1805.11689] [INSPIRE].ADSCrossRefGoogle Scholar
- [64]M.P. Heller and V. Svensson, How does relativistic kinetic theory remember about initial conditions?, Phys. Rev. D 98 (2018) 054016 [arXiv:1802.08225] [INSPIRE].ADSGoogle Scholar
- [65]A. Cherman, P. Koroteev and M. Ünsal, Resurgence and Holomorphy: From Weak to Strong Coupling, J. Math. Phys. 56 (2015) 053505 [arXiv:1410.0388] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [66]A. Grassi, M. Mariño and S. Zakany, Resumming the string perturbation series, JHEP 05 (2015) 038 [arXiv:1405.4214] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [67]R. Couso-Santamaría, R. Schiappa and R. Vaz, Finite N from Resurgent Large N, Annals Phys. 356 (2015) 1 [arXiv:1501.01007] [INSPIRE].
- [68]R. Couso-Santamaría, M. Mariño and R. Schiappa, Resurgence Matches Quantization, J. Phys. A 50 (2017) 145402 [arXiv:1610.06782] [INSPIRE].
- [69]O. Costin, Exponential Asymptotics, Transseries, and Generalized Borel Summation for Analytic Rank One Systems of ODE’s, Int. Math. Res. Not. 8 (1995) 377 [math/0608414].
- [70]O. Costin, On Borel Summation and Stokes Phenomena for Rank-1 Nonlinear Systems of Ordinary Differential Equations, Duke Math. J. 93 (1998) 289 [math/0608408].
- [71]I. Aniceto, R. Schiappa and M. Vonk, Painlevé resurgent transseries, to appear (2018) [http://online.kitp.ucsb.edu/online/resurgent_c17/vonk].
- [72]S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].ADSCrossRefGoogle Scholar