Advertisement

Journal of High Energy Physics

, 2019:70 | Cite as

Phase structure of the twisted SU(3)/U(1)2 flag sigma model on ℝ × S1

  • Masaru Hongo
  • Tatsuhiro Misumi
  • Yuya TanizakiEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We investigate the phase structure of the compactified 2-dimensional nonlinear SU(3)/U(1)2 flag sigma model with respect to two θ-terms. Based on the circle compactification with the ℤ3-twisted boundary condition, which preserves an ’t Hooft anomaly of the original uncompactified theory, we perform the semiclassical analysis based on the dilute instanton gas approximation (DIGA). We clarify classical vacua of the theory and derive fractional instanton solutions connecting these vacua. The resulting phase structure based on DIGA exhibits the quantum phase transitions and triple degeneracy at special points in the (θ1, θ2)-plane, which is consistent with the phase diagram obtained from the anomaly matching and global inconsistency conditions. This result indicates the adiabatic continuity between the flag sigma models on ℝ2 and ℝ × S1 with small compactification radius. We further estimate contributions from instanton-anti-instanton configuration (bion) and show the existence of the imaginary ambiguity, which is expected to be cancelled by that of the perturbative Borel resummation.

Keywords

Anomalies in Field and String Theories Sigma Models Solitons Monopoles and Instantons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Bykov, Haldane limits via Lagrangian embeddings, Nucl. Phys. B 855 (2012) 100 [arXiv:1104.1419] [INSPIRE].
  2. [2]
    M. Lajkó, K. Wamer, F. Mila and I. Affleck, Generalization of the Haldane conjecture to SU(3) chains, Nucl. Phys. B 924 (2017) 508 [arXiv:1706.06598] [INSPIRE].
  3. [3]
    Y. Tanizaki and T. Sulejmanpasic, Anomaly and global inconsistency matching: θ-angles, SU(3)/U(1)2 nonlinear σ-model, SU(3) chains and its generalizations, Phys. Rev. B 98 (2018) 115126 [arXiv:1805.11423] [INSPIRE].
  4. [4]
    K. Ohmori, N. Seiberg and S.-H. Shao, σ -models on flags, SciPost Phys. 6 (2019) 017 [arXiv:1809.10604] [INSPIRE].
  5. [5]
    E.H. Lieb, T. Schultz and D. Mattis, Two soluble models of an antiferromagnetic chain, Annals Phys. 16 (1961) 407 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    I. Affleck and E.H. Lieb, A proof of part of Haldane’s conjecture on spin chains, Lett. Math. Phys. 12 (1986) 57 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    M. Oshikawa, Commensurability, excitation gap, and topology in quantum many-particle systems on a periodic lattice, Phys. Rev. Lett. 84 (2000) 1535 [cond-mat/9911137].
  8. [8]
    G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, in the proceedings of Developments in Gauge Theories. Proceedings, Nato Advanced Study Institute, August 26-September 8, Cargese, France (1979).Google Scholar
  9. [9]
    Y. Frishman, A. Schwimmer, T. Banks and S. Yankielowicz, The axial anomaly and the bound state spectrum in confining theories, Nucl. Phys. B 177 (1981) 157 [INSPIRE].
  10. [10]
    X.-G. Wen, Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders, Phys. Rev. D 88 (2013) 045013 [arXiv:1303.1803] [INSPIRE].
  11. [11]
    J.C. Wang, Z.-C. Gu and X.-G. Wen, Field theory representation of gauge-gravity symmetry-protected topological invariants, group cohomology and beyond, Phys. Rev. Lett. 114 (2015) 031601 [arXiv:1405.7689] [INSPIRE].
  12. [12]
    J. Wang, L.H. Santos and X.-G. Wen, Bosonic anomalies, induced fractional quantum numbers and degenerate zero modes: the anomalous edge physics of symmetry-protected topological states, Phys. Rev. B 91 (2015) 195134 [arXiv:1403.5256] [INSPIRE].
  13. [13]
    Y. Tachikawa and K. Yonekura, On time-reversal anomaly of 2 + 1d topological phases, PTEP 2017 (2017) 033B04 [arXiv:1610.07010] [INSPIRE].
  14. [14]
    D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, time reversal and temperature, JHEP 05 (2017) 091 [arXiv:1703.00501] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Y. Tanizaki and Y. Kikuchi, Vacuum structure of bifundamental gauge theories at finite topological angles, JHEP 06 (2017) 102 [arXiv:1705.01949] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Z. Komargodski, A. Sharon, R. Thorngren and X. Zhou, Comments on abelian Higgs models and persistent order, SciPost Phys. 6 (2019) 003 [arXiv:1705.04786] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Z. Komargodski, T. Sulejmanpasic and M. Ünsal, Walls, anomalies and deconfinement in quantum antiferromagnets, Phys. Rev. B 97 (2018) 054418 [arXiv:1706.05731] [INSPIRE].
  18. [18]
    Y. Tanizaki, T. Misumi and N. Sakai, Circle compactification and ’t Hooft anomaly, JHEP 12 (2017) 056 [arXiv:1710.08923] [INSPIRE].
  19. [19]
    Y. Tanizaki, Y. Kikuchi, T. Misumi and N. Sakai, Anomaly matching for the phase diagram of masslessN -QCD, Phys. Rev. D 97 (2018) 054012 [arXiv:1711.10487] [INSPIRE].
  20. [20]
    A. Cherman and M. Ünsal, Critical behavior of gauge theories and Coulomb gases in three and four dimensions, arXiv:1711.10567 [INSPIRE].
  21. [21]
    T. Sulejmanpasic and Y. Tanizaki, C-P-T anomaly matching in bosonic quantum field theory and spin chains, Phys. Rev. B 97 (2018) 144201 [arXiv:1802.02153] [INSPIRE].
  22. [22]
    Y. Yao, C.-T. Hsieh and M. Oshikawa, Anomaly matching and symmetry-protected critical phases in SU(N ) spin systems in 1 + 1 dimensions, arXiv:1805.06885 [INSPIRE].
  23. [23]
    M.M. Anber and E. Poppitz, Two-flavor adjoint QCD, Phys. Rev. D 98 (2018) 034026 [arXiv:1805.12290] [INSPIRE].
  24. [24]
    C. Córdova and T.T. Dumitrescu, Candidate Phases for SU(2) adjoint QCD 4 with two flavors from \( \mathcal{N}=2 \) supersymmetric Yang-Mills theory, arXiv:1806.09592 [INSPIRE].
  25. [25]
    M.M. Anber and E. Poppitz, Anomaly matching, (axial) Schwinger models and high-T super Yang-Mills domain walls, JHEP 09 (2018) 076 [arXiv:1807.00093] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    Y. Tanizaki, Anomaly constraint on massless QCD and the role of Skyrmions in chiral symmetry breaking, JHEP 08 (2018) 171 [arXiv:1807.07666] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    E. Witten, Instantons, the quark model and the 1/n expansion, Nucl. Phys. B 149 (1979) 285 [INSPIRE].
  28. [28]
    I. Affleck, The role of instantons in scale invariant gauge theories, Nucl. Phys. B 162 (1980) 461 [INSPIRE].
  29. [29]
    M. Ünsal, Abelian duality, confinement and chiral symmetry breaking in QCD(adj), Phys. Rev. Lett. 100 (2008) 032005 [arXiv:0708.1772] [INSPIRE].
  30. [30]
    P. Kovtun, M. Ünsal and L.G. Yaffe, Volume independence in large N c QCD-like gauge theories, JHEP 06 (2007) 019 [hep-th/0702021] [INSPIRE].
  31. [31]
    M. Ünsal, Magnetic bion condensation: a new mechanism of confinement and mass gap in four dimensions, Phys. Rev. D 80 (2009) 065001 [arXiv:0709.3269] [INSPIRE].
  32. [32]
    M. Ünsal and L.G. Yaffe, Center-stabilized Yang-Mills theory: confinement and large N volume independence, Phys. Rev. D 78 (2008) 065035 [arXiv:0803.0344] [INSPIRE].
  33. [33]
    M. Shifman and M. Ünsal, QCD-like theories on R 3 × S 1 : a smooth journey from small to large r(S 1) with double-trace deformations, Phys. Rev. D 78 (2008) 065004 [arXiv:0802.1232] [INSPIRE].
  34. [34]
    M. Shifman and M. Ünsal, Multiflavor QCD* on R 3 × S 1 : studying transition from abelian to non-abelian confinement, Phys. Lett. B 681 (2009) 491 [arXiv:0901.3743] [INSPIRE].
  35. [35]
    G.V. Dunne and M. Ünsal, New nonperturbative methods in quantum field theory: from large-N orbifold equivalence to bions and resurgence, Ann. Rev. Nucl. Part. Sci. 66 (2016) 245 [arXiv:1601.03414] [INSPIRE].
  36. [36]
    G.V. Dunne and M. Ünsal, Resurgence and trans-series in quantum field theory: the CP N−1 model, JHEP 11 (2012) 170 [arXiv:1210.2423] [INSPIRE].
  37. [37]
    T. Sulejmanpasic, Global symmetries, volume independence and continuity in quantum field theories, Phys. Rev. Lett. 118 (2017) 011601 [arXiv:1610.04009] [INSPIRE].
  38. [38]
    G.V. Dunne and M. Ünsal, Continuity and resurgence: towards a continuum definition of theP N −1 model, Phys. Rev. D 87 (2013) 025015 [arXiv:1210.3646] [INSPIRE].
  39. [39]
    A. Cherman, D. Dorigoni, G.V. Dunne and M. Ünsal, Resurgence in quantum field theory: nonperturbative effects in the principal chiral model, Phys. Rev. Lett. 112 (2014) 021601 [arXiv:1308.0127] [INSPIRE].
  40. [40]
    A. Cherman, D. Dorigoni and M. Ünsal, Decoding perturbation theory using resurgence: Stokes phenomena, new saddle points and Lefschetz thimbles, JHEP 10 (2015) 056 [arXiv:1403.1277] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    T. Misumi, M. Nitta and N. Sakai, Neutral bions in theP N −1 model, JHEP 06 (2014) 164 [arXiv:1404.7225] [INSPIRE].
  42. [42]
    T. Misumi, M. Nitta and N. Sakai, Classifying bions in Grassmann σ-models and non-Abelian gauge theories by D-branes, PTEP 2015 (2015) 033B02 [arXiv:1409.3444] [INSPIRE].
  43. [43]
    G.V. Dunne and M. Ünsal, Resurgence and dynamics of O(N) and Grassmannian σ-models, JHEP 09 (2015) 199 [arXiv:1505.07803] [INSPIRE].
  44. [44]
    P.V. Buividovich, G.V. Dunne and S.N. Valgushev, Complex path integrals and saddles in two-dimensional gauge theory, Phys. Rev. Lett. 116 (2016) 132001 [arXiv:1512.09021] [INSPIRE].
  45. [45]
    S. Demulder, D. Dorigoni and D.C. Thompson, Resurgence in η-deformed principal chiral models, JHEP 07 (2016) 088 [arXiv:1604.07851] [INSPIRE].
  46. [46]
    T. Misumi, M. Nitta and N. Sakai, Non-BPS exact solutions and their relation to bions inP N −1 models, JHEP 05 (2016) 057 [arXiv:1604.00839] [INSPIRE].
  47. [47]
    T. Fujimori et al., Nonperturbative contributions from complexified solutions inP N −1 models, Phys. Rev. D 94 (2016) 105002 [arXiv:1607.04205] [INSPIRE].
  48. [48]
    T. Fujimori et al., Exact resurgent trans-series and multibion contributions to all orders, Phys. Rev. D 95 (2017) 105001 [arXiv:1702.00589] [INSPIRE].
  49. [49]
    T. Fujimori et al., Resurgence structure to all orders of multi-bions in deformed SUSY quantum mechanics, PTEP 2017 (2017) 083B02 [arXiv:1705.10483] [INSPIRE].
  50. [50]
    D. Dorigoni and P. Glass, The grin of Cheshire cat resurgence from supersymmetric localization, SciPost Phys. 4 (2018) 012 [arXiv:1711.04802] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    K. Okuyama and K. Sakai, Resurgence analysis of 2d Yang-Mills theory on a torus, JHEP 08 (2018) 065 [arXiv:1806.00189] [INSPIRE].
  52. [52]
    T. Fujimori, S. Kamata, T. Misumi, M. Nitta and N. Sakai, Bion non-perturbative contributions versus infrared renormalons in two-dimensionalP N −1 models, arXiv:1810.03768 [INSPIRE].
  53. [53]
    L.N. Lipatov, Divergence of the perturbation theory series and the quasiclassical theory, Sov. Phys. JETP 45 (1977) 216 [INSPIRE].ADSGoogle Scholar
  54. [54]
    J. Zinn-Justin, Multi-instanton contributions in quantum mechanics, Nucl. Phys. B 192 (1981) 125 [INSPIRE].
  55. [55]
    H. Aoyama et al., Valleys in quantum mechanics, Phys. Lett. B 424 (1998) 93 [quant-ph/9710064] [INSPIRE].
  56. [56]
    G. Alvarez and C. Casares, Exponentially small corrections in the asymptotic expansion of the eigenvalues of the cubic anharmonic oscillator, J. Phys. A 33 (2000) 5171.Google Scholar
  57. [57]
    J. Zinn-Justin and U.D. Jentschura, Multi-instantons and exact results I: conjectures, WKB expansions and instanton interactions, Annals Phys. 313 (2004) 197 [quant-ph/0501136] [INSPIRE].
  58. [58]
    G.V. Dunne and M. Ünsal, Generating nonperturbative physics from perturbation theory, Phys. Rev. D 89 (2014) 041701 [arXiv:1306.4405] [INSPIRE].
  59. [59]
    G. Basar, G.V. Dunne and M. Ünsal, Resurgence theory, ghost-instantons and analytic continuation of path integrals, JHEP 10 (2013) 041 [arXiv:1308.1108] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    T. Misumi, M. Nitta and N. Sakai, Resurgence in sine-Gordon quantum mechanics: exact agreement between multi-instantons and uniform WKB, JHEP 09 (2015) 157 [arXiv:1507.00408] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    A. Behtash et al., Complexified path integrals, exact saddles and supersymmetry, Phys. Rev. Lett. 116 (2016) 011601 [arXiv:1510.00978] [INSPIRE].
  62. [62]
    C. Kozçaz, T. Sulejmanpasic, Y. Tanizaki and M. Ünsal, Cheshire cat resurgence, self-resurgence and quasi-exact solvable systems, Commun. Math. Phys. 364 (2018) 835 [arXiv:1609.06198] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    M. Mariño, Open string amplitudes and large order behavior in topological string theory, JHEP 03 (2008) 060 [hep-th/0612127] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    M. Mariño, R. Schiappa and M. Weiss, Nonperturbative effects and the large-order behavior of matrix models and topological strings, Commun. Num. Theor. Phys. 2 (2008) 349 [arXiv:0711.1954] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    M. Mariño, Nonperturbative effects and nonperturbative definitions in matrix models and topological strings, JHEP 12 (2008) 114 [arXiv:0805.3033] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    M. Mariño, R. Schiappa and M. Weiss, Multi-instantons and multi-cuts, J. Math. Phys. 50 (2009) 052301 [arXiv:0809.2619] [INSPIRE].
  67. [67]
    I. Aniceto, R. Schiappa and M. Vonk, The resurgence of instantons in string theory, Commun. Num. Theor. Phys. 6 (2012) 339 [arXiv:1106.5922] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    R. Schiappa and R. Vaz, The resurgence of instantons: multi-cut stokes phases and the Painleve II equation, Commun. Math. Phys. 330 (2014) 655 [arXiv:1302.5138] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    I. Aniceto and R. Schiappa, Nonperturbative ambiguities and the reality of resurgent transseries, Commun. Math. Phys. 335 (2015) 183 [arXiv:1308.1115] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    R. Couso-Santamaría, J.D. Edelstein, R. Schiappa and M. Vonk, Resurgent transseries and the holomorphic anomaly, Annales Henri Poincaré 17 (2016) 331 [arXiv:1308.1695] [INSPIRE].
  71. [71]
    A. Grassi, M. Mariño and S. Zakany, Resumming the string perturbation series, JHEP 05 (2015) 038 [arXiv:1405.4214] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    R. Couso-Santamaría, J.D. Edelstein, R. Schiappa and M. Vonk, Resurgent transseries and the holomorphic anomaly: nonperturbative closed strings in local ℂ2, Commun. Math. Phys. 338 (2015) 285 [arXiv:1407.4821] [INSPIRE].
  73. [73]
    R. Couso-Santamaría, R. Schiappa and R. Vaz, Finite N from resurgent large N, Annals Phys. 356 (2015) 1 [arXiv:1501.01007] [INSPIRE].
  74. [74]
    I. Aniceto, The resurgence of the cusp anomalous dimension, J. Phys. A 49 (2016) 065403 [arXiv:1506.03388] [INSPIRE].
  75. [75]
    D. Dorigoni and Y. Hatsuda, Resurgence of the cusp anomalous dimension, JHEP 09 (2015) 138 [arXiv:1506.03763] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  76. [76]
    T. Kuroki and F. Sugino, One-point functions of non-SUSY operators at arbitrary genus in a matrix model for type IIA superstrings, Nucl. Phys. B 919 (2017) 325 [arXiv:1609.01628] [INSPIRE].
  77. [77]
    R. Couso-Santamaría, M. Mariño and R. Schiappa, Resurgence matches quantization, J. Phys. A 50 (2017) 145402 [arXiv:1610.06782] [INSPIRE].
  78. [78]
    G. Arutyunov, D. Dorigoni and S. Savin, Resurgence of the dressing phase for AdS 5× S 5, JHEP 01 (2017) 055 [arXiv:1608.03797] [INSPIRE].
  79. [79]
    I. Aniceto, J.G. Russo and R. Schiappa, Resurgent analysis of localizable observables in supersymmetric gauge theories, JHEP 03 (2015) 172 [arXiv:1410.5834] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  80. [80]
    M. Honda, Borel summability of perturbative series in 4D N = 2 and 5D N = 1 supersymmetric theories, Phys. Rev. Lett. 116 (2016) 211601 [arXiv:1603.06207] [INSPIRE].
  81. [81]
    M. Honda, How to resum perturbative series in 3d N = 2 Chern-Simons matter theories, Phys. Rev. D 94 (2016) 025039 [arXiv:1604.08653] [INSPIRE].
  82. [82]
    M. Honda, Supersymmetric solutions and Borel singularities for N = 2 supersymmetric Chern-Simons theories, Phys. Rev. Lett. 121 (2018) 021601 [arXiv:1710.05010] [INSPIRE].
  83. [83]
    T. Fujimori et al., Resurgence and Lefschetz thimble in three-dimensional \( \mathcal{N}=2 \) supersymmetric Chern-Simons matter theories, PTEP 2018 (2018) 123B03 [arXiv:1805.12137] [INSPIRE].
  84. [84]
    M. Mariño, Lectures on non-perturbative effects in large N gauge theories, matrix models and strings, Fortsch. Phys. 62 (2014) 455 [arXiv:1206.6272] [INSPIRE].
  85. [85]
    I. Aniceto, G. Basar and R. Schiappa, A primer on resurgent transseries and their asymptotics, arXiv:1802.10441 [INSPIRE].
  86. [86]
    M. Eto et al., Instantons in the Higgs phase, Phys. Rev. D 72 (2005) 025011 [hep-th/0412048] [INSPIRE].
  87. [87]
    M. Eto et al., Non-abelian vortices on cylinder: duality between vortices and walls, Phys. Rev. D 73 (2006) 085008 [hep-th/0601181] [INSPIRE].
  88. [88]
    M. Eto et al., Solitons in the Higgs phase: the moduli matrix approach, J. Phys. A 39 (2006) R315 [hep-th/0602170] [INSPIRE].
  89. [89]
    F. Bruckmann, Instanton constituents in the O(3) model at finite temperature, Phys. Rev. Lett. 100 (2008) 051602 [arXiv:0707.0775] [INSPIRE].
  90. [90]
    W. Brendel et al., Instanton constituents and fermionic zero modes in twisted CP n models, Phys. Lett. B 676 (2009) 116 [arXiv:0902.2328] [INSPIRE].
  91. [91]
    G.V. Dunne, Y. Tanizaki and M. Ünsal, Quantum distillation of Hilbert spaces, semi-classics and anomaly matching, JHEP 08 (2018) 068 [arXiv:1803.02430] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  92. [92]
    O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional gauge theories, JHEP 08 (2013) 115 [arXiv:1305.0318] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  93. [93]
    A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and duality, JHEP 04 (2014) 001 [arXiv:1401.0740] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  95. [95]
    Y. Tachikawa, Magnetic discrete gauge field in the confining vacua and the supersymmetric index, JHEP 03 (2015) 035 [arXiv:1412.2830] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  96. [96]
    S.R. Coleman, There are no Goldstone bosons in two-dimensions, Commun. Math. Phys. 31 (1973) 259 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  97. [97]
    N.D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-dimensional or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17 (1966) 1133 [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    X. Chen, Z.C. Gu and X.G. Wen, Classification of gapped symmetric phases in one-dimensional spin systems, Phys. Rev. B 83 (2011) 035107 [arXiv:1008.3745].
  99. [99]
    Y. Kikuchi and Y. Tanizaki, Global inconsistency, ’t Hooft anomaly and level crossing in quantum mechanics, PTEP 2017 (2017) 113B05 [arXiv:1708.01962] [INSPIRE].
  100. [100]
    E. Witten, Analytic continuation of Chern-Simons theory, AMS/IP Stud. Adv. Math. 50 (2011) 347 [arXiv:1001.2933] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  101. [101]
    E. Witten, A new look at the path integral of quantum mechanics, arXiv:1009.6032 [INSPIRE].
  102. [102]
    AuroraScience collaboration, New approach to the sign problem in quantum field theories: High density QCD on a Lefschetz thimble, Phys. Rev. D 86 (2012) 074506 [arXiv:1205.3996] [INSPIRE].
  103. [103]
    M. Cristoforetti, F. Di Renzo, A. Mukherjee and L. Scorzato, Monte Carlo simulations on the Lefschetz thimble: taming the sign problem, Phys. Rev. D 88 (2013) 051501 [arXiv:1303.7204] [INSPIRE].
  104. [104]
    H. Fujii et al., Hybrid monte carlo on lefschetz thimbles — A study of the residual sign problem, JHEP 10 (2013) 147 [arXiv:1309.4371] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    Y. Tanizaki and T. Koike, Real-time Feynman path integral with Picard-Lefschetz theory and its applications to quantum tunneling, Annals Phys. 351 (2014) 250 [arXiv:1406.2386] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  106. [106]
    A. Cherman and M. Ünsal, Real-time Feynman path integral realization of instantons, arXiv:1408.0012 [INSPIRE].
  107. [107]
    Y. Tanizaki, Lefschetz-thimble techniques for path integral of zero-dimensional O(n) σ-models, Phys. Rev. D 91 (2015) 036002 [arXiv:1412.1891] [INSPIRE].
  108. [108]
    T. Kanazawa and Y. Tanizaki, Structure of Lefschetz thimbles in simple fermionic systems, JHEP 03 (2015) 044 [arXiv:1412.2802] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    Y. Tanizaki, H. Nishimura and K. Kashiwa, Evading the sign problem in the mean-field approximation through Lefschetz-thimble path integral, Phys. Rev. D 91 (2015) 101701 [arXiv:1504.02979] [INSPIRE].
  110. [110]
    F. Di Renzo and G. Eruzzi, Thimble regularization at work: from toy models to chiral random matrix theories, Phys. Rev. D 92 (2015) 085030 [arXiv:1507.03858] [INSPIRE].
  111. [111]
    K. Fukushima and Y. Tanizaki, Hamilton dynamics for Lefschetz-thimble integration akin to the complex Langevin method, PTEP 2015 (2015) 111A01 [arXiv:1507.07351] [INSPIRE].
  112. [112]
    Y. Tanizaki, Y. Hidaka and T. Hayata, Lefschetz-thimble analysis of the sign problem in one-site fermion model, New J. Phys. 18 (2016) 033002 [arXiv:1509.07146] [INSPIRE].
  113. [113]
    H. Fujii, S. Kamata and Y. Kikukawa, Lefschetz thimble structure in one-dimensional lattice Thirring model at finite density, JHEP 11 (2015) 078 [Erratum ibid. 02 (2016) 036] [arXiv:1509.08176] [INSPIRE].
  114. [114]
    H. Fujii, S. Kamata and Y. Kikukawa, Monte Carlo study of Lefschetz thimble structure in one-dimensional Thirring model at finite density, JHEP 12 (2015) 125 [Erratum ibid. 1609 (2016) 172] [arXiv:1509.09141] [INSPIRE].
  115. [115]
    A. Alexandru, G. Basar and P. Bedaque, Monte Carlo algorithm for simulating fermions on Lefschetz thimbles, Phys. Rev. D 93 (2016) 014504 [arXiv:1510.03258] [INSPIRE].
  116. [116]
    A. Alexandru et al., Sign problem and Monte Carlo calculations beyond Lefschetz thimbles, JHEP 05 (2016) 053 [arXiv:1512.08764] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    Y. Tanizaki and M. Tachibana, Multi-flavor massless QED 2 at finite densities via Lefschetz thimbles, JHEP 02 (2017) 081 [arXiv:1612.06529] [INSPIRE].
  118. [118]
    Y. Tanizaki, H. Nishimura and J.J.M. Verbaarschot, Gradient flows without blow-up for Lefschetz thimbles, JHEP 10 (2017) 100 [arXiv:1706.03822] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  119. [119]
    C. Gattringer, D. Göschl and T. Sulejmanpasic, Dual simulation of the 2d U(1) gauge Higgs model at topological angle θ = π: critical endpoint behavior, Nucl. Phys. B 935 (2018) 344 [arXiv:1807.07793] [INSPIRE].
  120. [120]
    D. Israel, C. Kounnas, D. Orlando and P.M. Petropoulos, Heterotic strings on homogeneous spaces, Fortsch. Phys. 53 (2005) 1030 [hep-th/0412220] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  121. [121]
    D. Israel, C. Kounnas, D. Orlando and P.M. Petropoulos, Electric/magnetic deformations of S 3 and AdS 3 and geometric cosets, Fortsch. Phys. 53 (2005) 73 [hep-th/0405213] [INSPIRE].
  122. [122]
    B. Piette and W.J. Zakrzewski, Properties of classical solutions of the U(N) chiral σ-models in two-dimensions, Nucl. Phys. B 300 (1988) 223 [INSPIRE].
  123. [123]
    B. Piette and W.J. Zakrzewski, General solutions of the U(3) and U(4) chiral σ models in two-dimensions, Nucl. Phys. B 300 (1988) 207 [INSPIRE].
  124. [124]
    E.B. Bogomolny, Stability of classical solutions, Sov. J. Nucl. Phys. 24 (1976) 449 [INSPIRE].MathSciNetGoogle Scholar
  125. [125]
    M.K. Prasad and C.M. Sommerfield, An exact classical solution for the ’t Hooft monopole and the Julia-Zee dyon, Phys. Rev. Lett. 35 (1975) 760 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.RIKEN iTHEMS, RIKENWakoJapan
  2. 2.Department of Mathematical ScienceAkita UniversityAkitaJapan
  3. 3.Research and Education Center for Natural SciencesKeio UniversityKanagawaJapan
  4. 4.RIKEN BNL Research Center, Brookhaven National LaboratoryUptonU.S.A.

Personalised recommendations