Advertisement

Journal of High Energy Physics

, 2019:63 | Cite as

Cayley graphs and complexity geometry

  • Henry W. LinEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

The basic idea of quantum complexity geometry is to endow the space of unitary matrices with a metric, engineered to make complex operators far from the identity, and simple operators near. By restricting our attention to a finite subgroup of the unitary group, we observe that this idea can be made rigorous: the complexity geometry becomes what is known as a Cayley graph. This connection allows us to translate results from the geometrical group theory literature into statements about complexity. For example, the notion of δ-hyperbolicity makes precise the idea that complexity geometry is negatively curved. We report an exact (in the large N limit) computation of the average complexity as a function of time in a random circuit model.

Keywords

AdS-CFT Correspondence Random Systems 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K. Shizume, T. Nakajima, R. Nakayama and Y. Takahashi, Quantum computational Riemannian and sub-Riemannian geodesics, Prog. Theor. Phys. 127 (2012) 997 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    A.R. Brown and L. Susskind, Second law of quantum complexity, Phys. Rev. D 97 (2018) 086015 [arXiv:1701.01107] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    L. Susskind, Lectures on complexity and black holes, to be announced (2018).Google Scholar
  4. [4]
    D. Stanford and L. Susskind, Complexity and shock wave geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].ADSGoogle Scholar
  5. [5]
    A.R. Brown et al., Holographic complexity equals bulk action?, Phys. Rev. Lett. 116 (2016) 191301.ADSCrossRefGoogle Scholar
  6. [6]
    A.R. Brown et al., Complexity, action, and black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993].ADSMathSciNetGoogle Scholar
  7. [7]
    L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys. 64 (2016) 44 [arXiv:1403.5695] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Kitaev, A simple model of quantum holography, talks given at KITP, U.S.A. (2015).Google Scholar
  9. [9]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    A.R. Brown et al., The case of the missing gates: complexity of Jackiw-Teitelboim gravity, arXiv:1810.08741 [INSPIRE].
  11. [11]
    K. Goto et al., Holographic complexity equals which action?, arXiv:1901.00014 [INSPIRE].
  12. [12]
    J. Preskill, Lecture notes for physics 229: quantum information and computation, California Institute of Technology, U.S.A. (1998).Google Scholar
  13. [13]
    A.R. Brown, L. Susskind and Y. Zhao, Quantum complexity and negative curvature, Phys. Rev. D 95 (2017) 045010 [arXiv:1608.02612] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    P. Diaconis, Random walks on groups: characters and geometry, in Groups St. Andrews 2001 in Oxford, C.M. Campbell ed., Cambridge University Press, Cambridge U.K. (2002).Google Scholar
  15. [15]
    L. Saloff-Coste, Random walks on finite groups, in Probability on discrete structures, H. Kesten, Springer, Germany (2004).Google Scholar
  16. [16]
    N. Berestycki and R. Durrett, A phase transition in the random transposition random walk, Prob. Theor. Rel. Fields 136 (2006) 203.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    N. Berestycki, The hyperbolic geometry of random transpositions, Ann. Prob. (2006) 429.Google Scholar
  18. [18]
    W.M. Goh and E. Schmutz, The expected order of a random permutation, Bull. London Math. Soc. 23 (1991) 34.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    N. Alon and Y. Roichman, Random Cayley graphs and expanders, Random Struct. Alg. 5 (1994) 271.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    A. Lubotzky, R. Phillips and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988) 261.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    D. Aldous and P. Diaconis, Shuffling cards and stopping times, Amer. Math. Month. 93 (1986) 333.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    L. Saloff-Coste, Random walks on finite groups, in Probability on discrete structures, H. Kesten, Springer, Germany (2004).Google Scholar
  23. [23]
    D.A. Roberts, D. Stanford and A. Streicher, Operator growth in the SYK model, JHEP 06 (2018) 122 [arXiv:1802.02633].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    T. Toffoli, Reversible computing, in the proceedings of the International Colloquium on Automata, Languages, and Programming (ICALP), July 14–18, Noordwijkerhout, The Netherlands (1980).Google Scholar
  25. [25]
    V.V. Shende et al., Synthesis of reversible logic circuits, IEEE T. Comput. Aid. D. 22 (2003) 710.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Jadwin HallPrinceton UniversityPrincetonU.S.A.
  2. 2.Facebook AI Research, FacebookNew YorkU.S.A.

Personalised recommendations