Advertisement

Journal of High Energy Physics

, 2019:59 | Cite as

Multipartite dark matter with scalars, fermions and signatures at LHC

  • Subhaditya BhattacharyaEmail author
  • Purusottam Ghosh
  • Narendra Sahu
Open Access
Regular Article - Theoretical Physics

Abstract

Basic idea of this analysis is to achieve a two-component dark matter (DM) framework composed of a scalar and a fermion, with non-negligible DM-DM interaction contributing to thermal freeze out (hence relic density), but hiding them from direct detection bounds. We therefore augment the Standard Model (SM) with a scalar singlet (S) and three vectorlike fermions: two singlets (χ1, χ2) and a doublet (N). Stability of the two DM components is achieved by a discrete \( {\mathcal{Z}}_2 \times {\mathcal{Z}}_2^{\prime } \) symmetry, under which the additional fields transform suitably. Fermion fields having same \( {\mathcal{Z}}_2 \times {\mathcal{Z}}_2^{\prime } \) charge (N, χ1 in the model) mix after electroweak symmetry breaking (EWSB) and the lightest component becomes one of the DM candidates, while scalar singlet S is the other DM component connected to visible sector by Higgs portal coupling. The heavy fermion (χ2) plays the role of mediator to connect the two DM candidates through Yukawa interaction. This opens up a large parameter space for the heavier DM component through DM-DM conversion. Hadronically quiet dilepton signature, arising from the fermion dark sector, can be observed at Large Hadron Collider (LHC) aided by the presence of a lighter scalar DM component, satisfying relic density and direct search bounds through DM-DM conversion.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    V.C. Rubin, Optical observations of radio galaxies and quasi-stellar objectsOptical observations of radio galaxies and quasi-stellar radiosources, in Hautes Energies en Astrophysique: Proceedings, Ecole d’Eté de Physique Théorique, Les Houches, France, 1966, vol. 1, (1967) pp. 133-152.Google Scholar
  2. [2]
    V.C. Rubin and W.K. Ford Jr., Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions, Astrophys. J. 159 (1970) 379 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    W. Hu and S. Dodelson, Cosmic microwave background anisotropies, Ann. Rev. Astron. Astrophys. 40 (2002) 171 [astro-ph/0110414] [INSPIRE].
  4. [4]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
  5. [5]
    WMAP collaboration, Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].
  6. [6]
    Planck collaboration, Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
  7. [7]
    E.W. Kolb and M.S. Turner, The Early Universe, Front. Phys. 69 (1990) 1 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  8. [8]
    J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].
  9. [9]
    LUX collaboration, Limits on spin-dependent WIMP-nucleon cross section obtained from the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 251302 [arXiv:1705.03380] [INSPIRE].
  10. [10]
    XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  11. [11]
    XENON collaboration, Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].
  12. [12]
    PandaX-II collaboration, Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
  13. [13]
    Q.-H. Cao, E. Ma, J. Wudka and C.P. Yuan, Multipartite dark matter, arXiv:0711.3881 [INSPIRE].
  14. [14]
    S. Bhattacharya, A. Drozd, B. Grzadkowski and J. Wudka, Two-Component Dark Matter, JHEP 10 (2013) 158 [arXiv:1309.2986] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Biswas, D. Majumdar, A. Sil and P. Bhattacharjee, Two Component Dark Matter: A Possible Explanation of 130 GeV γRay Line from the Galactic Centre, JCAP 12 (2013) 049 [arXiv:1301.3668] [INSPIRE].
  16. [16]
    L. Bian, R. Ding and B. Zhu, Two Component Higgs-Portal Dark Matter, Phys. Lett. B 728 (2014) 105 [arXiv:1308.3851] [INSPIRE].
  17. [17]
    S. Esch, M. Klasen and C.E. Yaguna, A minimal model for two-component dark matter, JHEP 09 (2014) 108 [arXiv:1406.0617] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Dutta Banik, M. Pandey, D. Majumdar and A. Biswas, Two component WIMP-FImP dark matter model with singlet fermion, scalar and pseudo scalar, Eur. Phys. J. C 77 (2017) 657 [arXiv:1612.08621] [INSPIRE].
  19. [19]
    M. Klasen, F. Lyonnet and F.S. Queiroz, NLO+NLL collider bounds, Dirac fermion and scalar dark matter in the B-L model, Eur. Phys. J. C 77 (2017) 348 [arXiv:1607.06468] [INSPIRE].
  20. [20]
    S. Bhattacharya, P. Poulose and P. Ghosh, Multipartite Interacting Scalar Dark Matter in the light of updated LUX data, JCAP 04 (2017) 043 [arXiv:1607.08461] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Bhattacharya, P. Ghosh, T.N. Maity and T.S. Ray, Mitigating Direct Detection Bounds in Non-minimal Higgs Portal Scalar Dark Matter Models, JHEP 10 (2017) 088 [arXiv:1706.04699] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Herrero-Garcia, A. Scaffidi, M. White and A.G. Williams, On the direct detection of multi-component dark matter: sensitivity studies and parameter estimation, JCAP 11 (2017) 021 [arXiv:1709.01945] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Aoki, D. Kaneko and J. Kubo, Multicomponent Dark Matter in Radiative Seesaw Models, Front. in Phys. 5 (2017) 53 [arXiv:1711.03765] [INSPIRE].
  24. [24]
    N. Khan, Neutrino mass and the Higgs portal dark matter in the ESSFSM, Adv. High Energy Phys. 2018 (2018) 4809682 [arXiv:1707.07300] [INSPIRE].MathSciNetGoogle Scholar
  25. [25]
    A. Ahmed, M. Duch, B. Grzadkowski and M. Iglicki, Multi-Component Dark Matter: the vector and fermion case, Eur. Phys. J. C 78 (2018) 905 [arXiv:1710.01853] [INSPIRE].
  26. [26]
    J. Herrero-Garcia, A. Scaffidi, M. White and A.G. Williams, Time-dependent rate of multicomponent dark matter: Reproducing the DAMA/LIBRA phase-2 results, Phys. Rev. D 98 (2018) 123007 [arXiv:1804.08437] [INSPIRE].
  27. [27]
    M. Aoki and T. Toma, Boosted Self-interacting Dark Matter in a Multi-component Dark Matter Model, JCAP 10 (2018) 020 [arXiv:1806.09154] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Yaser Ayazi and A. Mohamadnejad, Scale-Invariant Two Component Dark Matter, arXiv:1808.08706 [INSPIRE].
  29. [29]
    A. Poulin and S. Godfrey, Multi-component dark matter from a hidden gauged SU(3), arXiv:1808.04901 [INSPIRE].
  30. [30]
    S. Chakraborti and P. Poulose, Interplay of Scalar and Fermionic Components in a Multi-component Dark Matter Scenario, arXiv:1808.01979 [INSPIRE].
  31. [31]
    J.A. Casas, D.G. Cerdeño, J.M. Moreno and J. Quilis, Reopening the Higgs portal for single scalar dark matter, JHEP 05 (2017) 036 [arXiv:1701.08134] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].
  33. [33]
    P. Ghosh, A.K. Saha and A. Sil, Study of Electroweak Vacuum Stability from Extended Higgs Portal of Dark Matter and Neutrinos, Phys. Rev. D 97 (2018) 075034 [arXiv:1706.04931] [INSPIRE].
  34. [34]
    S. Bhattacharya, N. Sahoo and N. Sahu, Minimal vectorlike leptonic dark matter and signatures at the LHC, Phys. Rev. D 93 (2016) 115040 [arXiv:1510.02760] [INSPIRE].
  35. [35]
    S. Bhattacharya, N. Sahoo and N. Sahu, Singlet-Doublet Fermionic Dark Matter, Neutrino Mass and Collider Signatures, Phys. Rev. D 96 (2017) 035010 [arXiv:1704.03417] [INSPIRE].
  36. [36]
    M. Hoferichter, P. Klos, J. Menéndez and A. Schwenk, Improved limits for Higgs-portal dark matter from LHC searches, Phys. Rev. Lett. 119 (2017) 181803 [arXiv:1708.02245] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    L. Feng, S. Profumo and L. Ubaldi, Closing in on singlet scalar dark matter: LUX, invisible Higgs decays and gamma-ray lines, JHEP 03 (2015) 045 [arXiv:1412.1105] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Bhattacharya, B. Karmakar, N. Sahu and A. Sil, Flavor origin of dark matter and its relation with leptonic nonzero θ 13 and Dirac CP phase δ, JHEP 05 (2017) 068 [arXiv:1611.07419] [INSPIRE].
  39. [39]
    P. Pal, An Introductory Course of Particle Physics, Taylor & Francis, (2014).Google Scholar
  40. [40]
    F. Pisano and A.T. Tran, Anomaly cancellation in a class of chiral flavor gauge models, in 14th Brazilian Meeting on Particles and Fields Caxambu, Brazil, September 29 - October 3, 1993.Google Scholar
  41. [41]
    K. Kannike, Vacuum Stability of a General Scalar Potential of a Few Fields, Eur. Phys. J. C 76 (2016) 324 [Erratum ibid. C 78 (2018) 355] [arXiv:1603.02680] [INSPIRE].
  42. [42]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  43. [43]
    M. Aoki, M. Duerr, J. Kubo and H. Takano, Multi-Component Dark Matter Systems and Their Observation Prospects, Phys. Rev. D 86 (2012) 076015 [arXiv:1207.3318] [INSPIRE].
  44. [44]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].
  45. [45]
    H. Han, J.M. Yang, Y. Zhang and S. Zheng, Collider Signatures of Higgs-portal Scalar Dark Matter, Phys. Lett. B 756 (2016) 109 [arXiv:1601.06232] [INSPIRE].
  46. [46]
    S. Bahrami, M. Frank, D.K. Ghosh, N. Ghosh and I. Saha, Dark matter and collider studies in the left-right symmetric model with vectorlike leptons, Phys. Rev. D 95 (2017) 095024 [arXiv:1612.06334] [INSPIRE].
  47. [47]
    B. Barman, S. Bhattacharya and M. Zakeri, Multipartite Dark Matter in SU(2)N extension of Standard Model and signatures at the LHC, JCAP 09 (2018) 023 [arXiv:1806.01129] [INSPIRE].
  48. [48]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  49. [49]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  50. [50]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  51. [51]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    R. Placakyte, Parton Distribution Functions, in Proceedings, 31st International Conference on Physics in collisions (PIC 2011): Vancouver, Canada, August 28 - September 1, 2011, arXiv:1111.5452 [INSPIRE].
  53. [53]
    J. Martin, C. Ringeval and V. Vennin, Encyclopædia Inflationaris, Phys. Dark Univ. 5-6 (2014) 75 [arXiv:1303.3787] [INSPIRE].
  54. [54]
    J. Martin, The Observational Status of Cosmic Inflation after Planck, Astrophys. Space Sci. Proc. 45 (2016) 41 [arXiv:1502.05733] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    K. Freese, E.I. Sfakianakis, P. Stengel and L. Visinelli, The Higgs Boson can delay Reheating after Inflation, JCAP 05 (2018) 067 [arXiv:1712.03791] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    R. Rangarajan and N. Sahu, Perturbative Reheating and Gravitino Production in Inflationary Models, Phys. Rev. D 79 (2009) 103534 [arXiv:0811.1866] [INSPIRE].
  57. [57]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Subhaditya Bhattacharya
    • 1
    Email author
  • Purusottam Ghosh
    • 1
  • Narendra Sahu
    • 2
  1. 1.Department of PhysicsIndian Institute of Technology GuwahatiNorth GuwahatiIndia
  2. 2.Department of Physics, Indian Institute of Technology HyderabadSangareddyIndia

Personalised recommendations