Advertisement

Journal of High Energy Physics

, 2019:58 | Cite as

How to build the thermofield double state

  • William Cottrell
  • Ben Freivogel
  • Diego M. Hofman
  • Sagar F. LokhandeEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

Given two copies of any quantum mechanical system, one may want to prepare them in the thermofield double state for the purpose of studying thermal physics or black holes. However, the thermofield double is a unique entangled pure state and may be difficult to prepare. We propose a local interacting Hamiltonian for the combined system whose ground state is approximately the thermofield double. The energy gap for this Hamiltonian is of order the temperature. Our construction works for any quantum system satisfying the Eigenvalue Thermalization Hypothesis.

Keywords

AdS-CFT Correspondence Black Holes Effective Field Theories Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Gao, D.L. Jafferis and A. Wall, Traversable Wormholes via a Double Trace Deformation, JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys. 65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].
  3. [3]
    L. Susskind, Dear Qubitzers, GR=QM, arXiv:1708.03040 [INSPIRE].
  4. [4]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].
  6. [6]
    E. Farhi, J. Goldstone and S. Gutmann, Quantum Adiabatic Evolution Algorithms versus Simulated Annealing, quant-ph/0201031.
  7. [7]
    K.L. Pudenz, G.S. Tallant, T.R. Belote and S.H. Adachi, Quantum Annealing and the Satisfiability Problem, arXiv:1612.07258.
  8. [8]
    J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].
  9. [9]
    B. Swingle and J. McGreevy, Renormalization group constructions of topological quantum liquids and beyond, Phys. Rev. B 93 (2016) 045127 [arXiv:1407.8203] [INSPIRE].
  10. [10]
    B. Swingle and J. McGreevy, Mixed s-sourcery: Building many-body states using bubbles of Nothing, Phys. Rev. B 94 (2016) 155125 [arXiv:1607.05753] [INSPIRE].
  11. [11]
    R. van Breukelen and K. Papadodimas, Quantum teleportation through time-shifted AdS wormholes, JHEP 08 (2018) 142 [arXiv:1708.09370] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S.E. Venegas-Andraca, W. Cruz-Santos, C. McGeoch and M. Lanzagorta, A cross-disciplinary introduction to quantum annealing-based algorithms, Contemp. Phys. 59 (2018) 174.Google Scholar
  13. [13]
    C. Barrett, R. Sebastiani, S. Seshia and C. Tinelli, Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications, ch. Satisfiability Modulo Theories, IOS Press (2009) [ https://doi.org/10.3233/978-1-58603-929-5-825].
  14. [14]
    T. Hogg, Adiabatic quantum computing for random satisfiability problems, Phys. Rev. A 67 (2003) 022314 [quant-ph/0206059].
  15. [15]
    P. Gao and H. Liu, Regenesis and quantum traversable wormholes, arXiv:1810.01444 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • William Cottrell
    • 1
    • 2
    • 3
  • Ben Freivogel
    • 2
    • 3
  • Diego M. Hofman
    • 2
  • Sagar F. Lokhande
    • 2
    Email author
  1. 1.Physics DepartmentStanford UniversityStanfordU.S.A.
  2. 2.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.GRAPPA, University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations