Advertisement

Journal of High Energy Physics

, 2019:57 | Cite as

Up- and down-quark masses from QCD sum rules

  • C. A. DominguezEmail author
  • A. Mes
  • K. Schilcher
Open Access
Regular Article - Theoretical Physics

Abstract

The QCD up- and down-quark masses are determined from an optimized QCD Finite Energy Sum Rule (FESR) involving the correlator of axial-vector current divergences. In the QCD sector this correlator is known to five loop order in perturbative QCD (PQCD), together with non-perturbative corrections from the quark and gluon condensates. This FESR is designed to reduce considerably the systematic uncertainties arising from the hadronic spectral function. The determination is done in the framework of both fixed order and contour improved perturbation theory. Results from the latter, involving far less systematic uncertainties, are: \( {\overline{m}}_u\left(2\ \mathrm{GeV}\right)=\left(2.6\pm 0.4\right) \) MeV, \( {\overline{m}}_d\left(2\ \mathrm{GeV}\right)=\left(5.3\pm 0.4\right) \) MeV, and the sum \( {\overline{m}}_{ud}\equiv \left({\overline{m}}_u+{\overline{m}}_d\right)/2 \), is \( {\overline{m}}_{ud}\left(2\ \mathrm{GeV}\right)=\left(3.9\pm 0.3\right) \)MeV.

Keywords

QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material

13130_2019_9940_MOESM1_ESM.nb
ESM1 Up-down-quark_masses_sum_rules_calculations.nb (NB 530 kb)

References

  1. [1]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 77 (2017) 112 [arXiv:1607.00299] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    C.A. Dominguez, Analytical Determination of QCD Quark Masses, in Fifty Years of Quarks, H. Fritzsch and M. Gell-Mann eds., World Scientific Publishing Co., Singapore (2015), pg. 287.Google Scholar
  3. [3]
    C.A. Dominguez, Quantum Chromodynamics Sum Rules, Springer Briefs in Physics, Springer, Heidelberg Germany (2018).CrossRefGoogle Scholar
  4. [4]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and Resonance Physics. Theoretical Foundations, Nucl. Phys. B 147 (1979) 385 [INSPIRE].
  5. [5]
    P. Colangelo and A. Khodjamirian, in: At the Frontier of Particle Physics: Handbook of QCD. Vol. 3, M. Shifman esd., World Scientific Publishing Co., Singapore (2001), pg. 1495.Google Scholar
  6. [6]
    R. Shankar, Determination of the quark-gluon Coupling Constant, Phys. Rev. D 15 (1977) 755 [INSPIRE].ADSGoogle Scholar
  7. [7]
    K. Maltman and J. Kambor, Decay constants, light quark masses and quark mass bounds from light quark pseudoscalar sum rules, Phys. Rev. D 65 (2002) 074013 [hep-ph/0108227] [INSPIRE].
  8. [8]
    C.A. Dominguez, N.F. Nasrallah, R. Röntsch and K. Schilcher, Strange quark mass from finite energy QCD sum rules to five loops, JHEP 05 (2008) 020 [arXiv:0712.0768] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C.A. Dominguez, N.F. Nasrallah, R.H. Röntsch and K. Schilcher, Up and down quark masses from Finite Energy QCD sum rules to five loops, Phys. Rev. D 79 (2009) 014009 [arXiv:0806.0467] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S.G. Gorishnii, A.L. Kataev, S.A. Larin and L.R. Surguladze, Corrected Three Loop QCD Correction to the Correlator of the Quark Scalar Currents and Γtot (H 0Hadrons), Mod. Phys. Lett. A 5 (1990) 2703 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S.G. Gorishnii, A.L. Kataev, S.A. Larin and L.R. Surguladze, Scheme dependence of the next to next-to-leading QCD corrections to Γtot (H 0hadrons) and the spurious QCD infrared fixed point, Phys. Rev. D 43 (1991) 1633 [INSPIRE].ADSGoogle Scholar
  12. [12]
    K.G. Chetyrkin, Correlator of the quark scalar currents and Γtot (Hhadrons) at O(α S3) in pQCD, Phys. Lett. B 390 (1997) 309 [hep-ph/9608318] [INSPIRE].
  13. [13]
    K.G. Chetyrkin, D. Pirjol and K. Schilcher, Order α S3 determination of the strange quark mass, Phys. Lett. B 404 (1997) 337 [hep-ph/9612394] [INSPIRE].
  14. [14]
    K.G. Chetyrkin, C.A. Dominguez, D. Pirjol and K. Schilcher, Mass singularities in light quark correlators: The Strange quark case, Phys. Rev. D 51 (1995) 5090 [hep-ph/9409371] [INSPIRE].
  15. [15]
    M. Jamin and M. Münz, The Strange quark mass from QCD sum rules, Z. Phys. C 66 (1995) 633 [hep-ph/9409335] [INSPIRE].
  16. [16]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Strong coupling constant with flavor thresholds at four loops in the MS scheme, Phys. Rev. Lett. 79 (1997) 2184 [hep-ph/9706430] [INSPIRE].
  17. [17]
    M. Davier, A. Hocker and Z. Zhang, The Physics of hadronic tau decays, Rev. Mod. Phys. 78 (2006) 1043 [hep-ph/0507078] [INSPIRE].
  18. [18]
    P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-Loop Running of the QCD coupling constant, Phys. Rev. Lett. 118 (2017) 082002 [arXiv:1606.08659] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  20. [20]
    K.G. Chetyrkin, J.H. Kühn and M. Steinhauser, RunDec: A Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [INSPIRE].
  21. [21]
    A. Mes and J. Stephens, An Application of Rubi: Series Expansion of the Quark Mass Renormalization Group Equation, arXiv:1811.04892 [INSPIRE].
  22. [22]
    P.A. Baikov, K. Chetyrkin and J.H. Kühn, Quark Mass and Field Anomalous Dimensions to O(α s5), JHEP 10 (2014) 076 [arXiv:1402.6611] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    H. Pagels and A. Zepeda, Where are the corrections to the goldberger-treiman relation?, Phys. Rev. D 5 (1972) 3262 [INSPIRE].ADSGoogle Scholar
  24. [24]
    C.A. Dominguez and E. de Rafael, Light Quark Masses in QCD from Local Duality, Annals Phys. 174 (1987) 372 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. Bijnens, J. Prades and E. de Rafael, Light quark masses in QCD, Phys. Lett. B 348 (1995) 226 [hep-ph/9411285] [INSPIRE].
  26. [26]
    V.A. Shchegelsky, A.V. Sarantsev, A.V. Anisovich and M.P. Levchenko, Partial wave analysis of π + π π 0 production in two-photon collisions at LEP, Eur. Phys. J. A 27 (2006) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C.A. Dominguez, L.A. Hernandez and K. Schilcher, Determination of the gluon condensate from data in the charm-quark region, JHEP 07 (2015) 110 [arXiv:1411.4500] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Gonzalez-Alonso, A. Pich and J. Prades, Violation of Quark-Hadron Duality and Spectral Chiral Moments in QCD, Phys. Rev. D 81 (2010) 074007 [arXiv:1001.2269] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Pich and A. Rodríguez-Sánchez, Updated determination of α s(m τ2) from tau decays, Mod. Phys. Lett. A 31 (2016) 1630032 [arXiv:1606.07764] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Centre for Theoretical and Mathematical Physics and Department of PhysicsUniversity of Cape TownRondeboschSouth Africa
  2. 2.Institut für PhysikJohannes Gutenberg-UniversitätMainzGermany

Personalised recommendations