Advertisement

Journal of High Energy Physics

, 2019:55 | Cite as

Holographic RG flows on curved manifolds and the F-theorem

  • J. K. Ghosh
  • E. Kiritsis
  • F. Nitti
  • L. T. WitkowskiEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We study F-functions in the context of field theories on S3 using gauge-gravity duality, with the radius of S3 playing the role of RG scale. We show that the on-shell action, evaluated over a set of holographic RG flow solutions, can be used to define good F-functions, which decrease monotonically along the RG flow from the UV to the IR for a wide range of examples. If the operator perturbing the UV CFT has dimension Δ > 3/2 these F -functions correspond to an appropriately renormalized free energy. If instead the perturbing operator has dimension Δ < 3/2 it is the quantum effective potential, i.e. the Legendre transform of the free energy, which gives rise to good F-functions. We check that these observations hold beyond holography for the case of a free fermion on S3 (Δ = 2) and the free boson on S3 (Δ = 1), resolving a long-standing problem regarding the non-monotonicity of the free energy for the free massive scalar. We also show that for a particular choice of entangling surface, we can define good F-functions from an entanglement entropy, which coincide with certain F-functions obtained from the on-shell action.

Keywords

AdS-CFT Correspondence Renormalization Group 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    J.L. Cardy, Is There a c Theorem in Four-Dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    Z. Komargodski and A. Schwimmer, On Renormalization Group Flows in Four Dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    H. Casini and M. Huerta, A finite entanglement entropy and the c-theorem, Phys. Lett. B 600 (2004) 142 [hep-th/0405111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].ADSGoogle Scholar
  6. [6]
    R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    T. Nishioka, Entanglement entropy: holography and renormalization group, Rev. Mod. Phys. 90 (2018) 035007 [arXiv:1801.10352] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-Theorem without Supersymmetry, JHEP 10 (2011) 038 [arXiv:1105.4598] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    S. Giombi and I.R. Klebanov, Interpolating between a and F, JHEP 03 (2015) 117 [arXiv:1409.1937] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  13. [13]
    T. Kawano, Y. Nakaguchi and T. Nishioka, Holographic Interpolation between a and F, JHEP 12 (2014) 161 [arXiv:1410.5973] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].ADSGoogle Scholar
  15. [15]
    D.R. Gulotta, C.P. Herzog and S.S. Pufu, From Necklace Quivers to the F-theorem, Operator Counting and T(U(N)), JHEP 12 (2011) 077 [arXiv:1105.2817] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    D.Z. Freedman and S.S. Pufu, The holography of F -maximization, JHEP 03 (2014) 135 [arXiv:1302.7310] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    C.G. Beneventano, I. Cavero-Peláez, D. D’Ascanio and E.M. Santangelo, Searching for a C-function on the three-dimensional sphere, J. Phys. A 50 (2017) 455401 [arXiv:1705.00071] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    H. Liu and M. Mezei, A refinement of entanglement entropy and the number of degrees of freedom, JHEP 04 (2013) 162 [arXiv:1202.2070] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev. D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].ADSGoogle Scholar
  20. [20]
    H. Casini, M. Huerta, R.C. Myers and A. Yale, Mutual information and the F-theorem, JHEP 10 (2015) 003 [arXiv:1506.06195] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    I.R. Klebanov, T. Nishioka, S.S. Pufu and B.R. Safdi, Is Renormalized Entanglement Entropy Stationary at RG Fixed Points?, JHEP 10 (2012) 058 [arXiv:1207.3360] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    N. Kobayashi, T. Nishioka, Y. Sato and K. Watanabe, Towards a C-theorem in defect CFT, JHEP 01 (2019) 039 [arXiv:1810.06995] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Taylor and W. Woodhead, The holographic F theorem, arXiv:1604.06809 [INSPIRE].
  24. [24]
    O. Ben-Ami, D. Carmi and M. Smolkin, Renormalization group flow of entanglement entropy on spheres, JHEP 08 (2015) 048 [arXiv:1504.00913] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    J.K. Ghosh, E. Kiritsis, F. Nitti and L.T. Witkowski, Holographic RG flows on curved manifolds and quantum phase transitions, JHEP 05 (2018) 034 [arXiv:1711.08462] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    C.-h. Ahn and J. Paeng, Three-dimensional SCFTs, supersymmetric domain wall and renormalization group flow, Nucl. Phys. B 595 (2001) 119 [hep-th/0008065] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    C.-h. Ahn and K. Woo, Supersymmetric domain wall and RG flow from 4-dimensional gauged N = 8 supergravity, Nucl. Phys. B 599 (2001) 83 [hep-th/0011121] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    C.-h. Ahn and K.-s. Woo, Domain wall and membrane flow from other gauged d = 4, N = 8 supergravity. Part 1, Nucl. Phys. B 634 (2002) 141 [hep-th/0109010] [INSPIRE].
  30. [30]
    C.-h. Ahn and K.-s. Woo, Domain wall from gauged d = 4, N = 8 supergravity. Part 2, JHEP 11 (2003) 014 [hep-th/0209128] [INSPIRE].
  31. [31]
    R. Corrado, K. Pilch and N.P. Warner, An N = 2 supersymmetric membrane flow, Nucl. Phys. B 629 (2002) 74 [hep-th/0107220] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    N. Bobev, N. Halmagyi, K. Pilch and N.P. Warner, Holographic, N = 1 Supersymmetric RG Flows on M2 Branes, JHEP 09 (2009) 043 [arXiv:0901.2736] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    S. Hohenegger and I. Kirsch, A note on the holography of Chern-Simons matter theories with flavour, JHEP 04 (2009) 129 [arXiv:0903.1730] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    Y. Hikida, W. Li and T. Takayanagi, ABJM with Flavors and FQHE, JHEP 07 (2009) 065 [arXiv:0903.2194] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    M. Ammon, J. Erdmenger, R. Meyer, A. O’Bannon and T. Wrase, Adding Flavor to AdS 4 /CFT 3, JHEP 11 (2009) 125 [arXiv:0909.3845] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    Y. Bea, E. Conde, N. Jokela and A.V. Ramallo, Unquenched massive flavors and flows in Chern-Simons matter theories, JHEP 12 (2013) 033 [arXiv:1309.4453] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: Part II, JHEP 02 (2008) 019 [arXiv:0707.1349] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  39. [39]
    S. Kuperstein and J. Sonnenschein, Non-critical, near extremal AdS 6 background as a holographic laboratory of four dimensional YM theory, JHEP 11 (2004) 026 [hep-th/0411009] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    C. Csáki, H. Ooguri, Y. Oz and J. Terning, Glueball mass spectrum from supergravity, JHEP 01 (1999) 017 [hep-th/9806021] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    A. Buchel, Quantum phase transitions in cascading gauge theory, Nucl. Phys. B 856 (2012) 278 [arXiv:1108.6070] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    D.L. Jafferis and S.S. Pufu, Exact results for five-dimensional superconformal field theories with gravity duals, JHEP 05 (2014) 032 [arXiv:1207.4359] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    L. Fei, S. Giombi and I.R. Klebanov, Critical O(N) models in 6 − ϵ dimensions, Phys. Rev. D 90 (2014) 025018 [arXiv:1404.1094] [INSPIRE].ADSGoogle Scholar
  44. [44]
    E. Kiritsis, F. Nitti and L. Silva Pimenta, Exotic RG Flows from Holography, Fortsch. Phys. 65 (2017) 1600120 [arXiv:1611.05493] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  47. [47]
    I. Papadimitriou, Multi-Trace Deformations in AdS/CFT: Exploring the Vacuum Structure of the Deformed CFT, JHEP 05 (2007) 075 [hep-th/0703152] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    I. Papadimitriou, Holographic Renormalization of general dilaton-axion gravity, JHEP 08 (2011) 119 [arXiv:1106.4826] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    E. Kiritsis, W. Li and F. Nitti, Holographic RG flow and the Quantum Effective Action, Fortsch. Phys. 62 (2014) 389 [arXiv:1401.0888] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].ADSMathSciNetGoogle Scholar
  51. [51]
    P. Kraus, F. Larsen and R. Siebelink, The gravitational action in asymptotically AdS and flat space-times, Nucl. Phys. B 563 (1999) 259 [hep-th/9906127] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    J. Maldacena and G.L. Pimentel, Entanglement entropy in de Sitter space, JHEP 02 (2013) 038 [arXiv:1210.7244] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    M. Taylor and W. Woodhead, Renormalized entanglement entropy, JHEP 08 (2016) 165 [arXiv:1604.06808] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris CitéParis Cedex 13France
  2. 2.Crete Center for Theoretical Physics, Department of PhysicsUniversity of CreteHeraklionGreece

Personalised recommendations