Advertisement

Journal of High Energy Physics

, 2019:48 | Cite as

Leptophilic dark matter from gauged lepton number: phenomenology and gravitational wave signatures

  • Eric MadgeEmail author
  • Pedro Schwaller
Open Access
Regular Article - Theoretical Physics
  • 14 Downloads

Abstract

New gauge symmetries often appear in theories beyond the Standard Model. Here we study a model where lepton number is promoted to a gauge symmetry. Anomaly cancellation requires the introduction of additional leptons, the lightest of which is a natural leptophilic dark matter candidate. We perform a comprehensive study of both collider and dark matter phenomenology. Furthermore we find that the model exhibits a first order lepton number breaking phase transition in large regions of parameter space. The corresponding gravitational wave signal is computed, and its detectability at LISA and other future GW detectors assessed. Finally we comment on the complementarity of dark matter, collider and gravitational wave observables, and on the potential reach of future colliders.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P.J. Fox and E. Poppitz, Leptophilic dark matter, Phys. Rev. D 79 (2009) 083528 [arXiv:0811.0399] [INSPIRE].ADSGoogle Scholar
  2. [2]
    S. Chang, R. Edezhath, J. Hutchinson and M. Luty, Leptophilic effective WIMPs, Phys. Rev. D 90 (2014) 015011 [arXiv:1402.7358] [INSPIRE].ADSGoogle Scholar
  3. [3]
    N.F. Bell, Y. Cai, R.K. Leane and A.D. Medina, Leptophilic dark matter with Zinteractions, Phys. Rev. D 90 (2014) 035027 [arXiv:1407.3001] [INSPIRE].ADSGoogle Scholar
  4. [4]
    P. Schwaller, T.M.P. Tait and R. Vega-Morales, Dark matter and vectorlike leptons from gauged lepton number, Phys. Rev. D 88 (2013) 035001 [arXiv:1305.1108] [INSPIRE].ADSGoogle Scholar
  5. [5]
    R. Foot, G.C. Joshi and H. Lew, Gauged baryon and lepton numbers, Phys. Rev. D 40 (1989) 2487 [INSPIRE].ADSGoogle Scholar
  6. [6]
    P. Fileviez Perez and M.B. Wise, Baryon and lepton number as local gauge symmetries, Phys. Rev. D 82 (2010) 011901 [Erratum ibid. D 82 (2010) 079901] [arXiv:1002.1754] [INSPIRE].
  7. [7]
    T.R. Dulaney, P. Fileviez Perez and M.B. Wise, Dark matter, baryon asymmetry and spontaneous B and L breaking, Phys. Rev. D 83 (2011) 023520 [arXiv:1005.0617] [INSPIRE].ADSGoogle Scholar
  8. [8]
    P. Fileviez Perez and M.B. Wise, Breaking local baryon and lepton number at the TeV scale, JHEP 08 (2011) 068 [arXiv:1106.0343] [INSPIRE].CrossRefzbMATHGoogle Scholar
  9. [9]
    M. Duerr, P. Fileviez Perez and M.B. Wise, Gauge theory for baryon and lepton numbers with leptoquarks, Phys. Rev. Lett. 110 (2013) 231801 [arXiv:1304.0576] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    W. Chao, Pure leptonic gauge symmetry, neutrino masses and dark matter, Phys. Lett. B 695 (2011) 157 [arXiv:1005.1024] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    W.-F. Chang and J.N. Ng, Study of gauged lepton symmetry signatures at colliders, Phys. Rev. D 98 (2018) 035015 [arXiv:1805.10382] [INSPIRE].ADSGoogle Scholar
  12. [12]
    W.-F. Chang and J.N. Ng, Alternative perspective on gauged lepton number and implications for collider physics, arXiv:1808.08188 [INSPIRE].
  13. [13]
    P. Fileviez Perez, S. Ohmer and H.H. Patel, Minimal theory for lepto-baryons, Phys. Lett. B 735 (2014) 283 [arXiv:1403.8029] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Ohmer and H.H. Patel, Leptobaryons as Majorana dark matter, Phys. Rev. D 92 (2015) 055020 [arXiv:1506.00954] [INSPIRE].ADSGoogle Scholar
  15. [15]
    P. Agrawal, Z. Chacko and C.B. Verhaaren, Leptophilic dark matter and the anomalous magnetic moment of the muon, JHEP 08 (2014) 147 [arXiv:1402.7369] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Y. Bai and J. Berger, Lepton portal dark matter, JHEP 08 (2014) 153 [arXiv:1402.6696] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Freitas and S. Westhoff, Leptophilic dark matter in lepton interactions at LEP and ILC, JHEP 10 (2014) 116 [arXiv:1408.1959] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    H.-S. Lee, Muon g − 2 anomaly and dark leptonic gauge boson, Phys. Rev. D 90 (2014) 091702 [arXiv:1408.4256] [INSPIRE].ADSGoogle Scholar
  19. [19]
    Q.-H. Cao, C.-R. Chen and T. Gong, Leptophilic dark matter confronts AMS-02 cosmic-ray positron flux, Chin. J. Phys. 55 (2017) 10 [arXiv:1409.7317] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    J. Kile, A. Kobach and A. Soni, Lepton-flavored dark matter, Phys. Lett. B 744 (2015) 330 [arXiv:1411.1407] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Aranda, E. Jiménez and C.A. Vaquera-Araujo, Electroweak phase transition in a model with gauged lepton number, JHEP 01 (2015) 070 [arXiv:1410.7508] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    Y.S. Jeong, C.S. Kim and H.-S. Lee, Constraints on the U(1)L gauge boson in a wide mass range, Int. J. Mod. Phys. A 31 (2016) 1650059 [arXiv:1512.03179] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    L.A. Cavasonza et al., Constraints on leptophilic dark matter from the AMS-02 experiment, Astrophys. J. 839 (2017) 36 [Erratum ibid. 869 (2018) 89] [arXiv:1612.06634] [INSPIRE].
  24. [24]
    F. D’Eramo, B.J. Kavanagh and P. Panci, Probing leptophilic dark sectors with hadronic processes, Phys. Lett. B 771 (2017) 339 [arXiv:1702.00016] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Dutta, D. Sachdeva and B. Rawat, Signals of leptophilic dark matter at the ILC, Eur. Phys. J. C 77 (2017) 639 [arXiv:1704.03994] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G.H. Duan et al., Simplified TeV leptophilic dark matter in light of DAMPE data, JHEP 02 (2018) 107 [arXiv:1711.11012] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C.-Y. Chen, J. Kozaczuk and Y.-M. Zhong, Exploring leptophilic dark matter with NA64-μ, JHEP 10 (2018) 154 [arXiv:1807.03790] [INSPIRE].ADSGoogle Scholar
  28. [28]
    B. Fornal, Y. Shirman, T.M.P. Tait and J.R. West, Asymmetric dark matter and baryogenesis from SU(2), Phys. Rev. D 96 (2017) 035001 [arXiv:1703.00199] [INSPIRE].ADSGoogle Scholar
  29. [29]
    P. Schwaller, Gravitational waves from a dark phase transition, Phys. Rev. Lett. 115 (2015) 181101 [arXiv:1504.07263] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J. Jaeckel, V.V. Khoze and M. Spannowsky, Hearing the signal of dark sectors with gravitational wave detectors, Phys. Rev. D 94 (2016) 103519 [arXiv:1602.03901] [INSPIRE].ADSGoogle Scholar
  31. [31]
    M. Chala, G. Nardini and I. Sobolev, Unified explanation for dark matter and electroweak baryogenesis with direct detection and gravitational wave signatures, Phys. Rev. D 94 (2016) 055006 [arXiv:1605.08663] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Addazi, Limiting first order phase transitions in dark gauge sectors from gravitational waves experiments, Mod. Phys. Lett. A 32 (2017) 1750049 [arXiv:1607.08057] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    I. Baldes, Gravitational waves from the asymmetric-dark-matter generating phase transition, JCAP 05 (2017) 028 [arXiv:1702.02117] [INSPIRE].ADSGoogle Scholar
  34. [34]
    A. Addazi and A. Marciano, Gravitational waves from dark first order phase transitions and dark photons, Chin. Phys. C 42 (2018) 023107 [arXiv:1703.03248] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    K. Tsumura, M. Yamada and Y. Yamaguchi, Gravitational wave from dark sector with dark pion, JCAP 07 (2017) 044 [arXiv:1704.00219] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Aoki, H. Goto and J. Kubo, Gravitational waves from hidden QCD phase transition, Phys. Rev. D 96 (2017) 075045 [arXiv:1709.07572] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    D. Croon, V. Sanz and G. White, Model discrimination in gravitational wave spectra from dark phase transitions, JHEP 08 (2018) 203 [arXiv:1806.02332] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    I. Baldes and C. Garcia-Cely, Strong gravitational radiation from a simple dark matter model, arXiv:1809.01198 [INSPIRE].
  39. [39]
    M. Breitbach, J. Kopp, E. Madge, T. Opferkuch and P. Schwaller, Dark, cold and noisy: constraining secluded hidden sectors with gravitational waves, arXiv:1811.11175 [INSPIRE].
  40. [40]
    K.S. Babu, C.F. Kolda and J. March-Russell, Implications of generalized Z-Zmixing, Phys. Rev. D 57 (1998) 6788 [hep-ph/9710441] [INSPIRE].
  41. [41]
    A. Alloul et al., FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  42. [42]
    G. Bélanger et al., MicrOMEGAs5.0: freeze-in, Comput. Phys. Commun. 231 (2018) 173 [arXiv:1801.03509] [INSPIRE].
  43. [43]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  44. [44]
    XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  45. [45]
    LUX-ZEPLIN collaboration, Projected WIMP sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment, arXiv:1802.06039 [INSPIRE].
  46. [46]
    DARWIN collaboration, DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017 [arXiv:1606.07001] [INSPIRE].
  47. [47]
    CTA collaboration, Prospects for indirect dark matter searches with the Cherenkov Telescope Array (CTA), PoS ICRC2015 (2016) 1203 [arXiv:1508.06128] [INSPIRE].
  48. [48]
    MAGIC, Fermi-LAT collaboration, Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies, JCAP 02 (2016) 039 [arXiv:1601.06590] [INSPIRE].
  49. [49]
    H.E.S.S. collaboration, Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S, Phys. Rev. Lett. 117 (2016) 111301 [arXiv:1607.08142] [INSPIRE].
  50. [50]
    Fermi-LAT collaboration, Updated search for spectral lines from Galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope, Phys. Rev. D 91 (2015) 122002 [arXiv:1506.00013] [INSPIRE].
  51. [51]
    HESS collaboration, Dark matter gamma-ray line searches toward the Galactic Center halo with H.E.S.S. I, PoS(ICRC2017)893 [arXiv:1708.08358] [INSPIRE].
  52. [52]
    Fermi-LAT collaboration, Sensitivity projections for dark matter searches with the Fermi Large Area Telescope, Phys. Rept. 636 (2016) 1 [arXiv:1605.02016] [INSPIRE].
  53. [53]
    A. Olivares-Del Campo, C. Bœhm, S. Palomares-Ruiz and S. Pascoli, Dark matter-neutrino interactions through the lens of their cosmological implications, Phys. Rev. D 97 (2018) 075039 [arXiv:1711.05283] [INSPIRE].ADSGoogle Scholar
  54. [54]
    I. Esteban et al., Updated constraints on non-standard interactions from global analysis of oscillation data, JHEP 08 (2018) 180 [arXiv:1805.04530] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Carena, A. Daleo, B.A. Dobrescu and T.M.P. Tait, Zgauge bosons at the Tevatron, Phys. Rev. D 70 (2004) 093009 [hep-ph/0408098] [INSPIRE].
  56. [56]
    Particle Data Group collaboration, Review of particle physics, Chin. Phys. C40 (2016) 100001.Google Scholar
  57. [57]
    ALEPH, DELPHI, L3, OPAL, LEP Electroweak collaboration, Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP, Phys. Rept. 532 (2013) 119 [arXiv:1302.3415] [INSPIRE].
  58. [58]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
  59. [59]
    ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 10 (2017) 182 [arXiv:1707.02424] [INSPIRE].
  60. [60]
    CMS collaboration, Search for high-mass resonances in dilepton final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 06 (2018) 120 [arXiv:1803.06292] [INSPIRE].
  61. [61]
    A. Hook, E. Izaguirre and J.G. Wacker, Model independent bounds on kinetic mixing, Adv. High Energy Phys. 2011 (2011) 859762 [arXiv:1006.0973] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    CMS collaboration, Combined measurements of the Higgs boson’s couplings at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-031 (2017).
  63. [63]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].
  64. [64]
    P. Bechtle et al., HiggsBounds-4: improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    ALEPH, DELPHI, L3, OPAL, LEP Working Group for Higgs Boson Searches collaboration, Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].
  66. [66]
    OPAL collaboration, Decay mode independent searches for new scalar bosons with the OPAL detector at LEP, Eur. Phys. J. C 27 (2003) 311 [hep-ex/0206022] [INSPIRE].
  67. [67]
    CMS collaboration, Update on the search for the standard model Higgs boson in pp collisions at the LHC decaying to W + W in the fully leptonic final state, CMS-PAS-HIG-13-003 (2013).
  68. [68]
    CMS collaboration, Properties of the Higgs-like boson in the decay HZZ → 4ℓ in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002 (2013).
  69. [69]
    CMS collaboration, Search for a Higgs boson in the mass range from 145 to 1000 GeV decaying to a pair of W or Z bosons, JHEP 10 (2015) 144 [arXiv:1504.00936] [INSPIRE].
  70. [70]
    ATLAS collaboration, Search for an additional, heavy Higgs boson in the HZZ decay channel at \( \sqrt{s}=8 \) TeV in pp collision data with the ATLAS detector, Eur. Phys. J. C 76 (2016) 45 [arXiv:1507.05930] [INSPIRE].
  71. [71]
    CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045 (2012).
  72. [72]
    ATLAS collaboration, Measurement of the Higgs boson coupling properties in the HZZ * → 4ℓ decay channel at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 03 (2018) 095 [arXiv:1712.02304] [INSPIRE].
  73. [73]
    ATLAS collaboration, Measurements of Higgs boson properties in the diphoton decay channel with 36 fb −1 of pp collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 052005 [arXiv:1802.04146] [INSPIRE].
  74. [74]
    ATLAS, CMS collaboration, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  75. [75]
    L3 collaboration, Search for heavy neutral and charged leptons in e + e annihilation at LEP, Phys. Lett. B 517 (2001) 75 [hep-ex/0107015] [INSPIRE].
  76. [76]
    ATLAS collaboration, Search for electroweak production of supersymmetric particles in final states with two or three leptons at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 995 [arXiv:1803.02762] [INSPIRE].
  77. [77]
    CMS collaboration, Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 03 (2018) 160 [arXiv:1801.03957] [INSPIRE].
  78. [78]
    C. Han et al., Probing light higgsinos in natural SUSY from monojet signals at the LHC, JHEP 02 (2014) 049 [arXiv:1310.4274] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    P. Schwaller and J. Zurita, Compressed electroweakino spectra at the LHC, JHEP 03 (2014) 060 [arXiv:1312.7350] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    H. Baer, A. Mustafayev and X. Tata, Monojets and mono-photons from light higgsino pair production at LHC14, Phys. Rev. D 89 (2014) 055007 [arXiv:1401.1162] [INSPIRE].ADSGoogle Scholar
  81. [81]
    Z. Han, G.D. Kribs, A. Martin and A. Menon, Hunting quasidegenerate Higgsinos, Phys. Rev. D 89 (2014) 075007 [arXiv:1401.1235] [INSPIRE].ADSGoogle Scholar
  82. [82]
    M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    R. Mahbubani, P. Schwaller and J. Zurita, Closing the window for compressed dark sectors with disappearing charged tracks, JHEP 06 (2017) 119 [Erratum ibid. 10 (2017) 061] [arXiv:1703.05327] [INSPIRE].
  84. [84]
    M. D’Onofrio and K. Rummukainen, Standard model cross-over on the lattice, Phys. Rev. D 93 (2016) 025003 [arXiv:1508.07161] [INSPIRE].ADSGoogle Scholar
  85. [85]
    A.D. Sakharov, Violation of CP invariance, C asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [INSPIRE].Google Scholar
  86. [86]
    A.D. Linde, Decay of the false vacuum at finite temperature, Nucl. Phys. B 216 (1983) 421 [Erratum ibid. B 223 (1983) 544] [INSPIRE].
  87. [87]
    M. Quirós, Finite temperature field theory and phase transitions, in the proceedings of the Summer School in High-energy physics and cosmology, June 29–July 17, Trieste, Italy (1999), hep-ph/9901312 [INSPIRE].
  88. [88]
    C. Caprini et al., Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions, JCAP 04 (2016) 001 [arXiv:1512.06239] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    L. Dolan and R. Jackiw, Symmetry behavior at finite temperature, Phys. Rev. D 9 (1974) 3320 [INSPIRE].ADSGoogle Scholar
  90. [90]
    D. Curtin, P. Meade and H. Ramani, Thermal resummation and phase transitions, Eur. Phys. J. C 78 (2018) 787 [arXiv:1612.00466] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  92. [92]
    C. Delaunay, C. Grojean and J.D. Wells, Dynamics of non-renormalizable electroweak symmetry breaking, JHEP 04 (2008) 029 [arXiv:0711.2511] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    C.L. Wainwright, CosmoTransitions: computing cosmological phase transition temperatures and bubble profiles with multiple fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    LISA collaboration, Laser interferometer space antenna, arXiv:1702.00786 [INSPIRE].
  95. [95]
    L. Leitao and A. Megevand, Gravitational waves from a very strong electroweak phase transition, JCAP 05 (2016) 037 [arXiv:1512.08962] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    D.J. Weir, Gravitational waves from a first order electroweak phase transition: a brief review, Phil. Trans. Roy. Soc. Lond. A 376 (2018) 20170126 [arXiv:1705.01783] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  97. [97]
    C. Caprini and D.G. Figueroa, Cosmological backgrounds of gravitational waves, Class. Quant. Grav. 35 (2018) 163001 [arXiv:1801.04268] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  98. [98]
    D. Bödeker and G.D. Moore, Can electroweak bubble walls run away?, JCAP 05 (2009) 009 [arXiv:0903.4099] [INSPIRE].CrossRefGoogle Scholar
  99. [99]
    D. Bödeker and G.D. Moore, Electroweak bubble wall speed limit, JCAP 05 (2017) 025 [arXiv:1703.08215] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  100. [100]
    S.J. Huber and T. Konstandin, Gravitational wave production by collisions: more bubbles, JCAP 09 (2008) 022 [arXiv:0806.1828] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Numerical simulations of acoustically generated gravitational waves at a first order phase transition, Phys. Rev. D 92 (2015) 123009 [arXiv:1504.03291] [INSPIRE].ADSGoogle Scholar
  102. [102]
    C. Caprini, R. Durrer and G. Servant, The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition, JCAP 12 (2009) 024 [arXiv:0909.0622] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    A. Kosowsky and M.S. Turner, Gravitational radiation from colliding vacuum bubbles: envelope approximation to many bubble collisions, Phys. Rev. D 47 (1993) 4372 [astro-ph/9211004] [INSPIRE].
  104. [104]
    J.R. Espinosa, T. Konstandin, J.M. No and G. Servant, Energy budget of cosmological first-order phase transitions, JCAP 06 (2010) 028 [arXiv:1004.4187] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    P. Binetruy, A. Bohe, C. Caprini and J.-F. Dufaux, Cosmological backgrounds of gravitational waves and eLISA/NGO: phase transitions, cosmic strings and other sources, JCAP 06 (2012) 027 [arXiv:1201.0983] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    S. Isoyama, H. Nakano and T. Nakamura, Multiband gravitational-wave astronomy: observing binary inspirals with a deciHertz detector, B-DECIGO, PTEP 2018 (2018) 073E01 [arXiv:1802.06977] [INSPIRE].
  107. [107]
    N. Seto, S. Kawamura and T. Nakamura, Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space, Phys. Rev. Lett. 87 (2001) 221103 [astro-ph/0108011] [INSPIRE].
  108. [108]
    J. Crowder and N.J. Cornish, Beyond LISA: exploring future gravitational wave missions, Phys. Rev. D 72 (2005) 083005 [gr-qc/0506015] [INSPIRE].
  109. [109]
    S. Sato et al., The status of DECIGO, J. Phys. Conf. Ser. 840 (2017) 012010.CrossRefGoogle Scholar
  110. [110]
    E. Thrane and J.D. Romano, Sensitivity curves for searches for gravitational-wave backgrounds, Phys. Rev. D 88 (2013) 124032 [arXiv:1310.5300] [INSPIRE].ADSGoogle Scholar
  111. [111]
    T. Robson, N. Cornish and C. Liu, The construction and use of LISA sensitivity curves, arXiv:1803.01944 [INSPIRE].
  112. [112]
    K. Yagi, N. Tanahashi and T. Tanaka, Probing the size of extra dimension with gravitational wave astronomy, Phys. Rev. D 83 (2011) 084036 [arXiv:1101.4997] [INSPIRE].ADSGoogle Scholar
  113. [113]
    K. Yagi, Scientific potential of DECIGO pathfinder and testing GR with space-borne gravitational wave interferometers, Int. J. Mod. Phys. D 22 (2013) 1341013 [arXiv:1302.2388] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    J. Ellis, TikZ-Feynman: Feynman diagrams with TikZ, Comput. Phys. Commun. 210 (2017) 103 [arXiv:1601.05437] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    M. Dohse, TikZ-FeynHand: basic user guide, arXiv:1802.00689 [INSPIRE].
  116. [116]
    G. Passarino and M.J.G. Veltman, One loop corrections for e + e annihilation into μ + μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    R. Mertig, M. Böhm and A. Denner, FEYN CALC: computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  118. [118]
    V. Shtabovenko, R. Mertig and F. Orellana, New developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].
  119. [119]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
  120. [120]
    G.J. van Oldenborgh and J.A.M. Vermaseren, New algorithms for one loop integrals, Z. Phys. C 46 (1990) 425 [INSPIRE].MathSciNetGoogle Scholar
  121. [121]
    G. ’t Hooft and M.J.G. Veltman, Scalar one loop integrals, Nucl. Phys. B 153 (1979) 365 [INSPIRE].
  122. [122]
    A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].ADSGoogle Scholar
  123. [123]
    T. Konstandin, G. Nardini and I. Rues, From Boltzmann equations to steady wall velocities, JCAP 09 (2014) 028 [arXiv:1407.3132] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    G.C. Dorsch, S.J. Huber and T. Konstandin, Bubble wall velocities in the Standard Model and beyond, JCAP 12 (2018) 034 [arXiv:1809.04907] [INSPIRE].ADSCrossRefGoogle Scholar
  125. [125]
    P.J. Steinhardt, Relativistic detonation waves and bubble growth in false vacuum decay, Phys. Rev. D 25 (1982) 2074 [INSPIRE].ADSGoogle Scholar
  126. [126]
    M. Laine, Bubble growth as a detonation, Phys. Rev. D 49 (1994) 3847 [hep-ph/9309242] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.PRISMA Cluster of Excellence & Mainz Institute for Theoretical PhysicsJohannes Gutenberg UniversityMainzGermany

Personalised recommendations