Advertisement

Journal of High Energy Physics

, 2019:45 | Cite as

Low scale left-right symmetry and naturally small neutrino mass

  • Vedran BrdarEmail author
  • Alexei Yu. Smirnov
Open Access
Regular Article - Theoretical Physics
  • 8 Downloads

Abstract

We consider the low scale (10-100 TeV) left-right symmetric model with “naturally” small neutrino masses generated through the inverse seesaw mechanism. The Dirac neutrino mass terms are taken to be similar to the masses of charged leptons and quarks in order to satisfy the quark-lepton similarity condition. The inverse seesaw implies the existence of fermion singlets S with Majorana mass terms as well as the “left” and “right” Higgs doublets. These doublets provide the portal for S and break the left-right symmetry. The inverse seesaw allows to realize a scenario in which the large lepton mixing originates from the Majorana mass matrix of S fields which has certain symmetry. The model contains heavy pseudo-Dirac fermions, formed by S and the right-handed neutrinos, which have masses in the 1 GeV-100 TeV range and can be searched for at current and various future colliders such as LHC, FCC-ee and FCC-hh as well as in SHiP and DUNE experiments. Their contribution to neutrinoless double beta decay is unobservable. The radiative corrections to the mass of the Higgs boson and the possibility for generating the baryon asymmetry of the Universe are discussed. Modification of the model with two singlets (SL and SR) per generation can provide a viable keV-scale dark matter candidate.

Keywords

Beyond Standard Model Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].
  2. [2]
    R.N. Mohapatra and J.C. Pati, Left-right gauge symmetry and an isoconjugate model of CP-violation, Phys. Rev. D 11 (1975) 566 [INSPIRE].
  3. [3]
    R.N. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].
  4. [4]
    G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].
  5. [5]
    R.N. Mohapatra and D.P. Sidhu, Gauge theories of weak interactions with left-right symmetry and the structure of neutral currents, Phys. Rev. D 16 (1977) 2843 [INSPIRE].
  6. [6]
    G. Senjanović, Is left-right symmetry the key?, Mod. Phys. Lett. A 32 (2017) 1730004 [arXiv:1610.04209] [INSPIRE].
  7. [7]
    P.S. Bhupal Dev, S. Goswami and M. Mitra, TeV scale left-right symmetry and large mixing effects in neutrinoless double beta decay, Phys. Rev. D 91 (2015) 113004 [arXiv:1405.1399] [INSPIRE].
  8. [8]
    M. Lindner, F.S. Queiroz, W. Rodejohann and C.E. Yaguna, Left-right symmetry and lepton number violation at the large hadron electron collider, JHEP 06 (2016) 140 [arXiv:1604.08596] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Probing the Higgs sector of the minimal left-right symmetric model at future hadron colliders, JHEP 05 (2016) 174 [arXiv:1602.05947] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    P.S.B. Dev and R.N. Mohapatra, TeV scale inverse seesaw in SO(10) and leptonic non-unitarity effects, Phys. Rev. D 81 (2010) 013001 [arXiv:0910.3924] [INSPIRE].
  11. [11]
    V. Tello, M. Nemevšek, F. Nesti, G. Senjanović and F. Vissani, Left-right symmetry: from LHC to neutrinoless double beta decay, Phys. Rev. Lett. 106 (2011) 151801 [arXiv:1011.3522] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    Y. Zhang, H. An, X. Ji and R.N. Mohapatra, General CP-violation in minimal left-right symmetric model and constraints on the right-handed scale, Nucl. Phys. B 802 (2008) 247 [arXiv:0712.4218] [INSPIRE].
  13. [13]
    A. Das, N. Nagata and N. Okada, Testing the 2 TeV resonance with trileptons, JHEP 03 (2016) 049 [arXiv:1601.05079] [INSPIRE].
  14. [14]
    A. Das, P.S.B. Dev and R.N. Mohapatra, Same sign versus opposite sign dileptons as a probe of low scale seesaw mechanisms, Phys. Rev. D 97 (2018) 015018 [arXiv:1709.06553] [INSPIRE].
  15. [15]
    P. Fileviez Perez, C. Murgui and S. Ohmer, Simple left-right theory: lepton number violation at the LHC, Phys. Rev. D 94 (2016) 051701 [arXiv:1607.00246] [INSPIRE].
  16. [16]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  17. [17]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
  18. [18]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
  19. [19]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].
  21. [21]
    R.N. Mohapatra, Mechanism for understanding small neutrino mass in superstring theories, Phys. Rev. Lett. 56 (1986) 561 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P.-H. Gu and U. Sarkar, Leptogenesis with linear, inverse or double seesaw, Phys. Lett. B 694 (2011) 226 [arXiv:1007.2323] [INSPIRE].
  23. [23]
    E.K. Akhmedov, M. Lindner, E. Schnapka and J.W.F. Valle, Left-right symmetry breaking in NJLS approach, Phys. Lett. B 368 (1996) 270 [hep-ph/9507275] [INSPIRE].
  24. [24]
    D. Wyler and L. Wolfenstein, Massless neutrinos in left-right symmetric models, Nucl. Phys. B 218 (1983) 205 [INSPIRE].
  25. [25]
    M. Lindner, M.A. Schmidt and A. Yu. Smirnov, Screening of Dirac flavor structure in the seesaw and neutrino mixing, JHEP 07 (2005) 048 [hep-ph/0505067] [INSPIRE].
  26. [26]
    A.Y. Smirnov and X.-J. Xu, Neutrino mixing in SO(10) GUTs with a non-Abelian flavor symmetry in the hidden sector, Phys. Rev. D 97 (2018) 095030 [arXiv:1803.07933] [INSPIRE].
  27. [27]
    G. Senjanović, Spontaneous breakdown of parity in a class of gauge theories, Nucl. Phys. B 153 (1979) 334 [INSPIRE].
  28. [28]
    P.S. Bhupal Dev, R.N. Mohapatra, W. Rodejohann and X.-J. Xu, Vacuum structure of the left-right symmetric model, arXiv:1811.06869 [INSPIRE].
  29. [29]
    N.G. Deshpande, J.F. Gunion, B. Kayser and F.I. Olness, Left-right symmetric electroweak models with triplet Higgs, Phys. Rev. D 44 (1991) 837 [INSPIRE].
  30. [30]
    G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135 [INSPIRE].
  31. [31]
    P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].
  32. [32]
    F. Vissani, A study of the scenario with nearly degenerate Majorana neutrinos, hep-ph/9708483 [INSPIRE].
  33. [33]
    V.D. Barger, S. Pakvasa, T.J. Weiler and K. Whisnant, Bimaximal mixing of three neutrinos, Phys. Lett. B 437 (1998) 107 [hep-ph/9806387] [INSPIRE].
  34. [34]
    P.O. Ludl and A. Yu. Smirnov, Lepton mixing from the hidden sector, Phys. Rev. D 92 (2015) 073010 [arXiv:1507.03494] [INSPIRE].
  35. [35]
    A. Yu. Smirnov, Seesaw enhancement of lepton mixing, Phys. Rev. D 48 (1993) 3264 [hep-ph/9304205] [INSPIRE].
  36. [36]
    A.C. Vincent, E.F. Martinez, P. Hernández, M. Lattanzi and O. Mena, Revisiting cosmological bounds on sterile neutrinos, JCAP 04 (2015) 006 [arXiv:1408.1956] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    F.F. Deppisch, P.S. Bhupal Dev and A. Pilaftsis, Neutrinos and collider physics, New J. Phys. 17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].
  38. [38]
    CHARM collaboration, A search for decays of heavy neutrinos in the mass range 0.5 GeV to 2.8 GeV, Phys. Lett. B 166 (1986) 473 [INSPIRE].
  39. [39]
    J. Orloff, A.N. Rozanov and C. Santoni, Limits on the mixing of tau neutrino to heavy neutrinos, Phys. Lett. B 550 (2002) 8 [hep-ph/0208075] [INSPIRE].
  40. [40]
    NuTeV and E815 collaborations, Search for neutral heavy leptons in a high-energy neutrino beam, Phys. Rev. Lett. 83 (1999) 4943 [hep-ex/9908011] [INSPIRE].
  41. [41]
    Z.-Z. Xing, H. Zhang and S. Zhou, Updated values of running quark and lepton masses, Phys. Rev. D 77 (2008) 113016 [arXiv:0712.1419] [INSPIRE].
  42. [42]
    S. Antusch, E. Cazzato and O. Fischer, Displaced vertex searches for sterile neutrinos at future lepton colliders, JHEP 12 (2016) 007 [arXiv:1604.02420] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    D. d’Enterria, Physics at the FCC-ee, in Proceedings, 17th Lomonosov Conference on Elementary Particle Physics, Moscow, Russia, 20-26 August 2015, World Scientific, Singapore (2017), pg. 182 [arXiv:1602.05043] [INSPIRE].
  44. [44]
    FCC-ee study Team collaboration, Search for heavy right handed neutrinos at the FCC-ee, Nucl. Part. Phys. Proc. 273-275 (2016) 1883 [arXiv:1411.5230] [INSPIRE].
  45. [45]
    O. Lantwin, Search for new physics with the SHiP experiment at CERN, PoS(EPS-HEP2017)304 (2017) [arXiv:1710.03277] [INSPIRE].
  46. [46]
    DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1601.05471 [INSPIRE].
  47. [47]
    S. Antusch, E. Cazzato and O. Fischer, Sterile neutrino searches at future e e + , pp and e p colliders, Int. J. Mod. Phys. A 32 (2017) 1750078 [arXiv:1612.02728] [INSPIRE].
  48. [48]
    T. Golling et al., Physics at a 100 TeV pp collider: beyond the Standard Model phenomena, CERN Yellow Report (2017) 441 [arXiv:1606.00947] [INSPIRE].
  49. [49]
    DELPHI collaboration, Search for neutral heavy leptons produced in Z decays, Z. Phys. C 74 (1997) 57 [Erratum ibid. C 75 (1997) 580] [INSPIRE].
  50. [50]
    CMS collaboration, Search for heavy neutrinos and W bosons with right-handed couplings in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 74 (2014) 3149 [arXiv:1407.3683] [INSPIRE].
  51. [51]
    S. Banerjee, P.S.B. Dev, A. Ibarra, T. Mandal and M. Mitra, Prospects of heavy neutrino searches at future lepton colliders, Phys. Rev. D 92 (2015) 075002 [arXiv:1503.05491] [INSPIRE].
  52. [52]
    P.S. Bhupal Dev, S. Goswami, M. Mitra and W. Rodejohann, Constraining neutrino mass from neutrinoless double beta decay, Phys. Rev. D 88 (2013) 091301 [arXiv:1305.0056] [INSPIRE].
  53. [53]
    H. Päs and W. Rodejohann, Neutrinoless double beta decay, New J. Phys. 17 (2015) 115010 [arXiv:1507.00170] [INSPIRE].CrossRefGoogle Scholar
  54. [54]
    F.F. Deppisch, C. Hati, S. Patra, P. Pritimita and U. Sarkar, Neutrinoless double beta decay in left-right symmetric models with a universal seesaw mechanism, Phys. Rev. D 97 (2018) 035005 [arXiv:1701.02107] [INSPIRE].
  55. [55]
    A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [INSPIRE].
  56. [56]
    A. De Simone and A. Riotto, On resonant leptogenesis, JCAP 08 (2007) 013 [arXiv:0705.2183] [INSPIRE].CrossRefGoogle Scholar
  57. [57]
    E.K. Akhmedov, V.A. Rubakov and A. Yu. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].
  58. [58]
    P.S. Bhupal Dev, P. Millington, A. Pilaftsis and D. Teresi, Flavour covariant transport equations: an application to resonant leptogenesis, Nucl. Phys. B 886 (2014) 569 [arXiv:1404.1003] [INSPIRE].
  59. [59]
    B. Dev, M. Garny, J. Klaric, P. Millington and D. Teresi, Resonant enhancement in leptogenesis, Int. J. Mod. Phys. A 33 (2018) 1842003 [arXiv:1711.02863] [INSPIRE].
  60. [60]
    K. Agashe, P. Du, M. Ekhterachian, C.S. Fong, S. Hong and L. Vecchi, Hybrid seesaw leptogenesis and TeV singlets, Phys. Lett. B 785 (2018) 489 [arXiv:1804.06847] [INSPIRE].
  61. [61]
    M. Aoki, N. Haba and R. Takahashi, A model realizing inverse seesaw and resonant leptogenesis, PTEP 2015 (2015) 113B03 [arXiv:1506.06946] [INSPIRE].
  62. [62]
    S. Blanchet, T. Hambye and F.-X. Josse-Michaux, Reconciling leptogenesis with observable μeγ rates, JHEP 04 (2010) 023 [arXiv:0912.3153] [INSPIRE].
  63. [63]
    S. Blanchet, P.S.B. Dev and R.N. Mohapatra, Leptogenesis with TeV scale inverse seesaw in SO(10), Phys. Rev. D 82 (2010) 115025 [arXiv:1010.1471] [INSPIRE].
  64. [64]
    A. Abada, G. Arcadi, V. Domcke and M. Lucente, Neutrino masses, leptogenesis and dark matter from small lepton number violation?, JCAP 12 (2017) 024 [arXiv:1709.00415] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].
  66. [66]
    F. Vissani, Do experiments suggest a hierarchy problem?, Phys. Rev. D 57 (1998) 7027 [hep-ph/9709409] [INSPIRE].
  67. [67]
    F. Bazzocchi and M. Fabbrichesi, Little hierarchy problem for new physics just beyond the LHC, Phys. Rev. D 87 (2013) 036001 [arXiv:1212.5065] [INSPIRE].
  68. [68]
    J.D. Clarke, R. Foot and R.R. Volkas, Electroweak naturalness in the three-flavor type-I seesaw model and implications for leptogenesis, Phys. Rev. D 91 (2015) 073009 [arXiv:1502.01352] [INSPIRE].
  69. [69]
    G. Bambhaniya, P. Bhupal Dev, S. Goswami, S. Khan and W. Rodejohann, Naturalness, vacuum stability and leptogenesis in the minimal seesaw model, Phys. Rev. D 95 (2017) 095016 [arXiv:1611.03827] [INSPIRE].
  70. [70]
    S. Davidson and A. Ibarra, A lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [INSPIRE].
  71. [71]
    K. Moffat, S. Pascoli, S.T. Petcov, H. Schulz and J. Turner, Three-flavored nonresonant leptogenesis at intermediate scales, Phys. Rev. D 98 (2018) 015036 [arXiv:1804.05066] [INSPIRE].
  72. [72]
    N. Haba, H. Ishida and Y. Yamaguchi, Naturalness and lepton number/flavor violation in inverse seesaw models, JHEP 11 (2016) 003 [arXiv:1608.07447] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].
  74. [74]
    J.A. Casas, V. Di Clemente, A. Ibarra and M. Quirós, Massive neutrinos and the Higgs mass window, Phys. Rev. D 62 (2000) 053005 [hep-ph/9904295] [INSPIRE].
  75. [75]
    M. Fabbrichesi and A. Urbano, Naturalness redux: the case of the neutrino seesaw mechanism, Phys. Rev. D 92 (2015) 015028 [arXiv:1504.05403] [INSPIRE].
  76. [76]
    S. Patra, F.S. Queiroz and W. Rodejohann, Stringent dilepton bounds on left-right models using LHC data, Phys. Lett. B 752 (2016) 186 [arXiv:1506.03456] [INSPIRE].
  77. [77]
    S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [INSPIRE].
  78. [78]
    X.-D. Shi and G.M. Fuller, A new dark matter candidate: nonthermal sterile neutrinos, Phys. Rev. Lett. 82 (1999) 2832 [astro-ph/9810076] [INSPIRE].
  79. [79]
    A. Merle, V. Niro and D. Schmidt, New production mechanism for keV sterile neutrino dark matter by decays of frozen-in scalars, JCAP 03 (2014) 028 [arXiv:1306.3996] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  80. [80]
    V. Brdar, J. Kopp, J. Liu and X.-P. Wang, X-ray lines from dark matter annihilation at the keV scale, Phys. Rev. Lett. 120 (2018) 061301 [arXiv:1710.02146] [INSPIRE].
  81. [81]
    T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].
  82. [82]
    T. Asaka, S. Blanchet and M. Shaposhnikov, The νMSM, dark matter and neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065] [INSPIRE].
  83. [83]
    S. Baumholzer, V. Brdar and P. Schwaller, The new νMSM (ννMSM): radiative neutrino masses, keV-scale dark matter and viable leptogenesis with sub-TeV new physics, JHEP 08 (2018) 067 [arXiv:1806.06864] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    K. Perez, K.C.Y. Ng, J.F. Beacom, C. Hersh, S. Horiuchi and R. Krivonos, Almost closing the νMSM sterile neutrino dark matter window with NuSTAR, Phys. Rev. D 95 (2017) 123002 [arXiv:1609.00667] [INSPIRE].
  85. [85]
    K. Abazajian, G.M. Fuller and W.H. Tucker, Direct detection of warm dark matter in the X-ray, Astrophys. J. 562 (2001) 593 [astro-ph/0106002] [INSPIRE].
  86. [86]
    G.G. Raffelt and S. Zhou, Supernova bound on keV-mass sterile neutrinos reexamined, Phys. Rev. D 83 (2011) 093014 [arXiv:1102.5124] [INSPIRE].
  87. [87]
    C.A. Argüelles, V. Brdar and J. Kopp, Production of keV sterile neutrinos in supernovae: new constraints and gamma ray observables, arXiv:1605.00654 [INSPIRE].
  88. [88]
    A. Schneider, Astrophysical constraints on resonantly produced sterile neutrino dark matter, JCAP 04 (2016) 059 [arXiv:1601.07553] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations