Advertisement

Journal of High Energy Physics

, 2019:41 | Cite as

Schwinger effect by an SU(2) gauge field during inflation

  • K. D. LozanovEmail author
  • A. Maleknejad
  • E. Komatsu
Open Access
Regular Article - Theoretical Physics
  • 16 Downloads

Abstract

Non-Abelian gauge fields may exist during inflation. We study the Schwinger effect by an SU(2) gauge field coupled to a charged scalar doublet in a (quasi) de Sitter background and the possible backreaction of the generated charged particles on the homogeneous dynamics. Contrary to the Abelian U(1) case, we find that both the Schwinger pair production and the induced current decrease as the interaction strength increases. The reason for this suppression is the isotropic vacuum expectation value of the SU(2) field which generates a (three times) greater effective mass for the scalar field than the U(1). In the weak interaction limit, the above effect is negligible and both the SU(2) and U(1) cases exhibit a linear increase of the current and a constant conductivity with the interaction strength. We conclude that the Schwinger effect does not pose a threat to the dynamics of inflationary models involving an SU(2) gauge field.

Keywords

Cosmology of Theories beyond the SM Nonperturbative Effects Spontaneous Symmetry Breaking 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    T. Kobayashi and N. Afshordi, Schwinger effect in 4D de Sitter space and constraints on magnetogenesis in the early universe, JHEP 10 (2014) 166 [arXiv:1408.4141] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M.B. Fröb et al., Schwinger effect in de Sitter space, JCAP 04 (2014) 009 [arXiv:1401.4137] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    T. Hayashinaka, T. Fujita and J. Yokoyama, Fermionic Schwinger effect and induced current in de Sitter space, JCAP 07 (2016) 010 [arXiv:1603.04165] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    R. Sharma and S. Singh, Multifaceted Schwinger effect in de Sitter space, Phys. Rev. D 96 (2017) 025012 [arXiv:1704.05076] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    A. Maleknejad and M.M. Sheikh-Jabbari, Gauge-flation: inflation from non-abelian gauge fields, Phys. Lett. B 723 (2013) 224 [arXiv:1102.1513] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A. Maleknejad and M.M. Sheikh-Jabbari, Non-Abelian gauge field inflation, Phys. Rev. D 84 (2011) 043515 [arXiv:1102.1932] [INSPIRE].ADSGoogle Scholar
  8. [8]
    P. Adshead and M. Wyman, Chromo-Natural Inflation: Natural inflation on a steep potential with classical non-Abelian gauge fields, Phys. Rev. Lett. 108 (2012) 261302 [arXiv:1202.2366] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    P. Adshead, E. Martinec and M. Wyman, Perturbations in chromo-natural inflation, JHEP 09 (2013) 087 [arXiv:1305.2930] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    P. Adshead, E. Martinec, E.I. Sfakianakis and M. Wyman, Higgsed chromo-natural inflation, JHEP 12 (2016) 137 [arXiv:1609.04025] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Adshead and E.I. Sfakianakis, Higgsed gauge-flation, JHEP 08 (2017) 130 [arXiv:1705.03024] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    E. Dimastrogiovanni, M. Fasiello and A.J. Tolley, Low-energy effective field theory for chromo-natural inflation, JCAP 02 (2013) 046 [arXiv:1211.1396] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    E. Dimastrogiovanni and M. Peloso, Stability analysis of chromo-natural inflation and possible evasion of Lyth’s bound, Phys. Rev. D 87 (2013) 103501 [arXiv:1212.5184] [INSPIRE].ADSGoogle Scholar
  14. [14]
    R. Namba, E. Dimastrogiovanni and M. Peloso, Gauge-flation confronted with Planck, JCAP 11 (2013) 045 [arXiv:1308.1366] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    A. Maleknejad, Axion inflation with an SU(2) gauge field: detectable chiral gravity waves, JHEP 07 (2016) 104 [arXiv:1604.03327] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    A. Maleknejad, M. M. Sheikh-Jabbari and J. Soda, Gauge fields and inflation, Phys. Rept. 528 (2013) 161 [arXiv:1212.2921] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    E. Dimastrogiovanni, M. Fasiello and T. Fujita, Primordial gravitational waves from axion-gauge fields dynamics, JCAP 01 (2017) 019 [arXiv:1608.04216] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Agrawal, T. Fujita and E. Komatsu, Large tensor non-Gaussianity from axion-gauge field dynamics, Phys. Rev. D 97 (2018) 103526 [arXiv:1707.03023] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    A. Agrawal, T. Fujita and E. Komatsu, Tensor non-Gaussianity from axion-gauge-fields dynamics: parameter search, JCAP 06 (2018) 027 [arXiv:1802.09284] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    A. Maleknejad, Gravitational leptogenesis in axion inflation with SU(2) gauge field, JCAP 12 (2016) 027 [arXiv:1604.06520] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    R.R. Caldwell and C. Devulder, Axion gauge field inflation and gravitational leptogenesis: a lower bound on B modes from the matter-antimatter asymmetry of the universe, Phys. Rev. D 97 (2018) 023532 [arXiv:1706.03765] [INSPIRE].ADSGoogle Scholar
  22. [22]
    P. Adshead, A.J. Long and E.I. Sfakianakis, Gravitational leptogenesis, reheating and models of neutrino mass, Phys. Rev. D 97 (2018) 043511 [arXiv:1711.04800] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Maleknejad, Chiral gravity waves and leptogenesis in inflationary models with non-abelian gauge fields, Phys. Rev. D 90 (2014) 023542 [arXiv:1401.7628] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Papageorgiou and M. Peloso, Gravitational leptogenesis in natural inflation, JCAP 12 (2017) 007 [arXiv:1708.08007] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P. Adshead, J.T. Giblin and Z.J. Weiner, Gravitational waves from gauge preheating, Phys. Rev. D 98 (2018) 043525 [arXiv:1805.04550] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].ADSzbMATHGoogle Scholar
  27. [27]
    K. Sato, First order phase transition of a vacuum and expansion of the universe, Mon. Not. Roy. Astron. Soc. 195 (1981) 467 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389.ADSCrossRefGoogle Scholar
  29. [29]
    A. Albrecht and P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (1984).Google Scholar
  31. [31]
    Z. Wang and D. Guo., Special functions, World Scientific, Singapore (1989).CrossRefGoogle Scholar
  32. [32]
    F.W. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark, NIST handbook of mathematical functions, 1st edition, Cambridge University Press, Cambridge U.K. (2010).Google Scholar
  33. [33]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  34. [34]
    BICEP2, Keck Array collaboration, Improved constraints on cosmology and foregrounds from BICEP2 and Keck Array cosmic microwave background data with inclusion of 95 GHz band, Phys. Rev. Lett. 116 (2016) 031302 [arXiv:1510.09217] [INSPIRE].
  35. [35]
    L. Parker and D. Toms, Quantum field theory in curved spacetime: quantized fields and gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2009).Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Max-Planck-Institute for AstrophysicsGarchingGermany
  2. 2.Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIASThe University of TokyoChibaJapan

Personalised recommendations