# Nongeometric heterotic strings and dual F-theory with enhanced gauge groups

- 10 Downloads

## Abstract

Eight-dimensional nongeometric heterotic strings were constructed as duals of F-theory on Λ^{1,1} ⊕ *E*_{8} ⊕ *E*_{7} lattice polarized K3 surfaces by Malmendier and Morrison. We study the structure of the moduli space of this construction. There are special points in this space at which the ranks of the non-Abelian gauge groups on the 7-branes in F-theory are enhanced to 18. We demonstrate that the enhanced rank-18 non-Abelian gauge groups arise as a consequence of the coincident 7-branes, which deform stable degenerations on the F-theory side. This observation suggests that the non-geometric heterotic strings include nonperturbative effects of the coincident 7-branes on the F-theory side. The gauge groups that arise at these special points in the moduli space do not allow for perturbative descriptions on the heterotic side.

We also construct a family of elliptically fibered Calabi-Yau 3-folds by fibering K3 surfaces with enhanced singularities over ℙ^{1}. Highly enhanced gauge groups arise in F-theory compactifications on the resulting Calabi-Yau 3-folds.

## Keywords

Differential and Algebraic Geometry F-Theory Gauge Symmetry Superstrings and Heterotic Strings## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]
- [2]D.R. Morrison and C. Vafa,
*Compactifications of F-theory on Calabi-Yau threefolds. 1*,*Nucl. Phys.***B 473**(1996) 74 [hep-th/9602114] [INSPIRE]. - [3]D.R. Morrison and C. Vafa,
*Compactifications of F-theory on Calabi-Yau threefolds. 2.*,*Nucl. Phys.***B 476**(1996) 437 [hep-th/9603161] [INSPIRE]. - [4]
- [5]R. Friedman, J. Morgan and E. Witten,
*Vector bundles and F-theory*,*Commun. Math. Phys.***187**(1997) 679 [hep-th/9701162] [INSPIRE]. - [6]R. Blumenhagen, G. Honecker and T. Weigand,
*Loop-corrected compactifications of the heterotic string with line bundles*,*JHEP***06**(2005) 020 [hep-th/0504232] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [7]R. Blumenhagen, G. Honecker and T. Weigand,
*Supersymmetric (non-)Abelian bundles in the Type I and*SO(32)*heterotic string*,*JHEP***08**(2005) 009 [hep-th/0507041] [INSPIRE]. - [8]L.B. Anderson, A. Constantin, J. Gray, A. Lukas and E. Palti,
*A comprehensive scan for heterotic*SU(5)*GUT models*,*JHEP***01**(2014) 047 [arXiv:1307.4787] [INSPIRE]. - [9]L.B. Anderson, J. Gray and E. Sharpe,
*Algebroids, heterotic moduli spaces and the Strominger system*,*JHEP***07**(2014) 037 [arXiv:1402.1532] [INSPIRE].ADSCrossRefGoogle Scholar - [10]X. de la Ossa and E.E. Svanes,
*Holomorphic bundles and the moduli space of N*= 1*supersymmetric heterotic compactifications*,*JHEP***10**(2014) 123 [arXiv:1402.1725] [INSPIRE]. - [11]L.B. Anderson and W. Taylor,
*Geometric constraints in dual F-theory and heterotic string compactifications*,*JHEP***08**(2014) 025 [arXiv:1405.2074] [INSPIRE].ADSCrossRefGoogle Scholar - [12]X. de la Ossa, E. Hardy and E.E. Svanes,
*The heterotic superpotential and moduli*,*JHEP***01**(2016) 049 [arXiv:1509.08724] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [13]P. Candelas, X. de la Ossa and J. McOrist,
*A metric for heterotic moduli*,*Commun. Math. Phys.***356**(2017) 567 [arXiv:1605.05256] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [14]A. Ashmore et al.,
*Finite deformations from a heterotic superpotential: holomorphic Chern-Simons and an L*_{∞}*algebra*,*JHEP***10**(2018) 179 [arXiv:1806.08367] [INSPIRE]. - [15]P. Candelas, X. De La Ossa, J. McOrist and R. Sisca,
*The universal geometry of heterotic vacua*, arXiv:1810.00879 [INSPIRE]. - [16]P.S. Aspinwall and D.R. Morrison,
*Point-like instantons on K*3*orbifolds*,*Nucl. Phys.***B 503**(1997) 533 [hep-th/9705104] [INSPIRE]. - [17]L.B. Anderson, J.J. Heckman and S. Katz,
*T-branes and geometry*,*JHEP***05**(2014) 080 [arXiv:1310.1931] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [18]A.P. Braun, Y. Kimura and T. Watari,
*The Noether-Lefschetz problem and gauge-group-resolved landscapes: F-theory on K*3 ×*K*3*as a test case*,*JHEP***04**(2014) 050 [arXiv:1401.5908] [INSPIRE]. - [19]N. Cabo Bizet, A. Klemm and D. Vieira Lopes,
*Landscaping with fluxes and the E*_{8}*Yukawa point in F-theory*, arXiv:1404.7645 [INSPIRE]. - [20]M. Cvetič et al.,
*Origin of abelian gauge symmetries in heterotic/F-theory duality*,*JHEP***04**(2016) 041 [arXiv:1511.08208] [INSPIRE].ADSzbMATHGoogle Scholar - [21]S. Mizoguchi and T. Tani,
*Looijenga’s weighted projective space, Tate’s algorithm and Mordell-Weil Lattice in F-theory and heterotic string theory*,*JHEP***11**(2016) 053 [arXiv:1607.07280] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [22]A. Malmendier and D.R. Morrison,
*K*3*surfaces, modular forms and non-geometric heterotic compactifications*,*Lett. Math. Phys.***105**(2015) 1085 [arXiv:1406.4873] [INSPIRE]. - [23]K.S. Narain,
*New heterotic string theories in uncompactified dimensions <*10,*Phys. Lett.***B 169**(1986) 41.Google Scholar - [24]S. Hellerman, J. McGreevy and B. Williams,
*Geometric constructions of nongeometric string theories*,*JHEP***01**(2004) 024 [hep-th/0208174] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [25]A. Kumar,
*K3 surfaces associated with curves of genus two*,*Int. Math. Res. Not.*(2008) rnm165 [math/0701669]. - [26]A. Clingher and C.F. Doran,
*Note on a geometric isogeny of K*3*surfaces*,*Int. Math. Res. Not.***2011**(2011) 3657 [arXiv:1004.3335]. - [27]A. Clingher and C.F. Doran,
*Lattice polarized K3 surfaces and Siegel modular forms*,*Adv. Math.***231**(2012) 172.MathSciNetCrossRefzbMATHGoogle Scholar - [28]G. Curio,
*N*= 2*string-string duality and holomorphic couplings*,*Fortsch. Phys.***46**(1998) 75 [hep-th/9708009] [INSPIRE]. - [29]L. Martucci, J.F. Morales and D. Ricci Pacifici,
*Branes, U-folds and hyperelliptic fibrations*,*JHEP***01**(2013) 145 [arXiv:1207.6120] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [30]A.P. Braun, F. Fucito and J.F. Morales,
*U-folds as K*3*fibrations*,*JHEP***10**(2013) 154 [arXiv:1308.0553] [INSPIRE]. - [31]J. McOrist, D.R. Morrison and S. Sethi,
*Geometries, non-geometries and fluxes*,*Adv. Theor. Math. Phys.***14**(2010) 1515 [arXiv:1004.5447] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [32]A. Clingher, A. Malmendier and T. Shaska,
*Six line configurations and string dualities*, arXiv:1806.07460 [INSPIRE]. - [33]J. Gu and H. Jockers,
*Nongeometric F-theory-heterotic duality*,*Phys. Rev.***D 91**(2015) 086007 [arXiv:1412.5739] [INSPIRE]. - [34]D. Lüst, S. Massai and V. Vall Camell,
*The monodromy of T-folds and T-fects*,*JHEP***09**(2016) 127 [arXiv:1508.01193] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [35]A. Font et al.,
*Heterotic T-fects,*6*D SCFTs and F-theory*,*JHEP***08**(2016) 175 [arXiv:1603.09361] [INSPIRE]. - [36]A. Malmendier and T. Shaska,
*The Satake sextic in F-theory*,*J. Geom. Phys.***120**(2017) 290 [arXiv:1609.04341] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [37]I. García-Etxebarria, D. Lüst, S. Massai and C. Mayrhofer,
*Ubiquity of non-geometry in heterotic compactifications*,*JHEP***03**(2017) 046 [arXiv:1611.10291] [INSPIRE]. - [38]A. Font and C. Mayrhofer,
*Non-geometric vacua of the Spin*(32)*/*ℤ_{2}*heterotic string and little string theories*,*JHEP***11**(2017) 064 [arXiv:1708.05428] [INSPIRE]. - [39]A. Font et al.,
*Non-geometric heterotic backgrounds and*6*D SCFTs/LSTs*, PoS(CORFU2016)123 [arXiv:1712.07083] [INSPIRE]. - [40]I.I. Piatetski-Shapiro and I.R. Shafarevich,
*A Torelli theorem for algebraic surfaces of type K3*,*Izv. Akad. Nauk SSSR Ser. Mat.***35**(1971) 530.Google Scholar - [41]T. Shioda and H. Inose,
*On singular K*3*surfaces*, in*Complex analysis and algebraic geometry*, W.L.Jr. Baily and T. Shioda eds., Iwanami Shoten, Tokyo Japan (1977).Google Scholar - [42]J.W.S. Cassels,
*Lectures on elliptic curves*, London Mathematical Society Student Texts volume 24, Cambridge University Press, Cambridge U.K. (1991).Google Scholar - [43]V. Braun and D.R. Morrison,
*F-theory on genus-one fibrations*,*JHEP***08**(2014) 132 [arXiv:1401.7844] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [44]D.R. Morrison and W. Taylor,
*Sections, multisections and U(1) fields in F-theory*, arXiv:1404.1527 [INSPIRE]. - [45]L.B. Anderson, I. García-Etxebarria, T.W. Grimm and J. Keitel,
*Physics of F-theory compactifications without section*,*JHEP***12**(2014) 156 [arXiv:1406.5180] [INSPIRE]. - [46]D. Klevers et al.,
*F-theory on all toric hypersurface fibrations and its Higgs branches*,*JHEP***01**(2015) 142 [arXiv:1408.4808] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [47]I. García-Etxebarria, T.W. Grimm and J. Keitel,
*Yukawas and discrete symmetries in F-theory compactifications without section*,*JHEP***11**(2014) 125 [arXiv:1408.6448] [INSPIRE]. - [48]C. Mayrhofer, E. Palti, O. Till and T. Weigand,
*Discrete gauge symmetries by Higgsing in four-dimensional f-theory compactifications*,*JHEP***12**(2014) 068 [arXiv:1408.6831] [INSPIRE].ADSCrossRefGoogle Scholar - [49]C. Mayrhofer, E. Palti, O. Till and T. Weigand,
*On discrete symmetries and torsion homology in F-theory*,*JHEP***06**(2015) 029 [arXiv:1410.7814] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [50]V. Braun, T.W. Grimm and J. Keitel,
*Complete intersection fibers in F-theory*,*JHEP***03**(2015) 125 [arXiv:1411.2615] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [51]M. Cvetič et al.,
*F-theory vacua with*ℤ_{3}*gauge symmetry*,*Nucl. Phys.***B 898**(2015) 736 [arXiv:1502.06953] [INSPIRE]. - [52]L. Lin, C. Mayrhofer, O. Till and T. Weigand,
*Fluxes in F-theory compactifications on genus-one fibrations*,*JHEP***01**(2016) 098 [arXiv:1508.00162] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [53]Y. Kimura,
*Gauge groups and matter fields on some models of F-theory without section*,*JHEP***03**(2016) 042 [arXiv:1511.06912] [INSPIRE]. - [54]Y. Kimura,
*Gauge symmetries and matter fields in F -theory models without section — Compactifications on double cover and Fermat quartic K*3*constructions times K*3,*Adv. Theor. Math. Phys.***21**(2017) 2087 [arXiv:1603.03212] [INSPIRE]. - [55]P.-K. Oehlmann, J. Reuter and T. Schimannek,
*Mordell-Weil torsion in the mirror of multi-sections*,*JHEP***12**(2016) 031 [arXiv:1604.00011] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [56]Y. Kimura,
*Gauge groups and matter spectra in F-theory compactifications on genus-one fibered Calabi-Yau 4-folds without section — Hypersurface and double cover constructions*, arXiv:1607.02978 [INSPIRE]. - [57]M. Cvetič, A. Grassi and M. Poretschkin,
*Discrete symmetries in heterotic/F-theory duality and mirror symmetry*,*JHEP***06**(2017) 156 [arXiv:1607.03176] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [58]Y. Kimura,
*Discrete gauge groups in F-theory models on genus-one fibered Calabi-Yau 4-folds without section*,*JHEP***04**(2017) 168 [arXiv:1608.07219] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [59]Y. Kimura,
*K*3*surfaces without section as double covers of Halphen surfaces and F-theory compactifications*,*PTEP***2018**(2018) 043B06 [arXiv:1801.06525] [INSPIRE]. - [60]L.B. Anderson, A. Grassi, J. Gray and P.-K. Oehlmann,
*F-theory on quotient threefolds with*(2*,*0)*discrete superconformal matter*,*JHEP***06**(2018) 098 [arXiv:1801.08658] [INSPIRE]. - [61]Y. Kimura, SU(
*N*) × ℤ_{2}*in F-theory on K*3*surfaces without section as double covers of Halphen surfaces*, arXiv:1806.01727 [INSPIRE]. - [62]
- [63]M. Cvetič, L. Lin, M. Liu and P.-K. Oehlmann,
*An F-theory realization of the chiral MSSM with*ℤ_{2}*-parity*,*JHEP***09**(2018) 089 [arXiv:1807.01320] [INSPIRE]. - [64]M. Cvetič and L. Lin,
*TASI lectures on abelian and discrete symmetries in F-theory*, PoS(TASI2017)020 [arXiv:1809.00012] [INSPIRE]. - [65]Y.-C. Huang and W. Taylor,
*On the prevalence of elliptic and genus one fibrations among toric hypersurface Calabi-Yau threefolds*, arXiv:1809.05160 [INSPIRE]. - [66]Y. Kimura,
*Structure of stable degeneration of K*3*surfaces into pairs of rational elliptic surfaces*,*JHEP***03**(2018) 045 [arXiv:1710.04984] [INSPIRE]. - [67]A. Grassi and D.R. Morrison,
*Group representations and the Euler characteristic of elliptically fibered Calabi-Yau threefolds*,*Jour. Alg. Geom.***12**(2003) 321 [math/0005196]. - [68]V. Kumar and W. Taylor,
*String universality in six dimensions*,*Adv. Theor. Math. Phys.***15**(2011) 325 [arXiv:0906.0987] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [69]V. Kumar, D.R. Morrison and W. Taylor,
*Mapping*6*D N*= 1*supergravities to F-theory*,*JHEP***02**(2010) 099 [arXiv:0911.3393] [INSPIRE]. - [70]V. Kumar, D.R. Morrison and W. Taylor,
*Global aspects of the space of*6*D N*= 1*supergravities*,*JHEP***11**(2010) 118 [arXiv:1008.1062] [INSPIRE]. - [71]D.R. Morrison and W. Taylor,
*Matter and singularities*,*JHEP***01**(2012) 022 [arXiv:1106.3563] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [72]A. Grassi and D.R. Morrison,
*Anomalies and the Euler characteristic of elliptic Calabi-Yau threefolds*,*Commun. Num. Theor. Phys.***6**(2012) 51 [arXiv:1109.0042] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [73]F. Bonetti and T.W. Grimm,
*Six-dimensional*(1*,*0)*effective action of F-theory via M-theory on Calabi-Yau threefolds*,*JHEP***05**(2012) 019 [arXiv:1112.1082] [INSPIRE]. - [74]D.R. Morrison and W. Taylor,
*Classifying bases for*6*D F-theory models*,*Central Eur. J. Phys.***10**(2012) 1072 [arXiv:1201.1943] [INSPIRE]. - [75]D.R. Morrison and W. Taylor,
*Toric bases for*6*D F-theory models*,*Fortsch. Phys.***60**(2012) 1187 [arXiv:1204.0283] [INSPIRE]. - [76]W. Taylor,
*On the Hodge structure of elliptically fibered Calabi-Yau threefolds*,*JHEP***08**(2012) 032 [arXiv:1205.0952] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [77]S.B. Johnson and W. Taylor,
*Enhanced gauge symmetry in*6*D F-theory models and tuned elliptic Calabi-Yau threefolds*,*Fortsch. Phys.***64**(2016) 581 [arXiv:1605.08052] [INSPIRE]. - [78]D.R. Morrison, D.S. Park and W. Taylor,
*Non-Higgsable abelian gauge symmetry and F -theory on fiber products of rational elliptic surfaces*,*Adv. Theor. Math. Phys.***22**(2018) 177 [arXiv:1610.06929] [INSPIRE]. - [79]S. Monnier, G.W. Moore and D.S. Park,
*Quantization of anomaly coefficients in*6*D*\( \mathcal{N}=\left(1,0\right) \)*supergravity*,*JHEP***02**(2018) 020 [arXiv:1711.04777] [INSPIRE]. - [80]Y.-C. Huang and W. Taylor,
*Comparing elliptic and toric hypersurface Calabi-Yau threefolds at large Hodge numbers*, arXiv:1805.05907 [INSPIRE]. - [81]S.-J. Lee, W. Lerche and T. Weigand,
*A stringy test of the scalar weak gravity conjecture*,*Nucl. Phys.***B 938**(2019) 321 [arXiv:1810.05169] [INSPIRE]. - [82]P. Arras, A. Grassi and T. Weigand,
*Terminal singularities, Milnor numbers and matter in F-theory*,*J. Geom. Phys.***123**(2018) 71 [arXiv:1612.05646] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [83]A. Grassi and T. Weigand,
*On topological invariants of algebraic threefolds with (*ℚ*-factorial) singularities*, arXiv:1804.02424 [INSPIRE]. - [84]R. Donagi and M. Wijnholt,
*Model building with F-theory*,*Adv. Theor. Math. Phys.***15**(2011) 1237 [arXiv:0802.2969] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [85]C. Beasley, J.J. Heckman and C. Vafa,
*GUTs and exceptional branes in F-theory — I*,*JHEP***01**(2009) 058 [arXiv:0802.3391] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [86]C. Beasley, J.J. Heckman and C. Vafa,
*GUTs and exceptional branes in F-theory — II: experimental predictions*,*JHEP***01**(2009) 059 [arXiv:0806.0102] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [87]R. Donagi and M. Wijnholt,
*Breaking GUT groups in F-theory*,*Adv. Theor. Math. Phys.***15**(2011) 1523 [arXiv:0808.2223] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [88]D.R. Morrison and D.S. Park,
*F-theory and the Mordell-Weil group of elliptically-fibered Calabi-Yau threefolds*,*JHEP***10**(2012) 128 [arXiv:1208.2695] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [89]C. Mayrhofer, E. Palti and T. Weigand, U(1)
*symmetries in F-theory GUTs with multiple sections*,*JHEP***03**(2013) 098 [arXiv:1211.6742] [INSPIRE]. - [90]V. Braun, T.W. Grimm and J. Keitel,
*New global F-theory GUTs with*U(1)*symmetries*,*JHEP***09**(2013) 154 [arXiv:1302.1854] [INSPIRE]. - [91]J. Borchmann, C. Mayrhofer, E. Palti and T. Weigand,
*Elliptic fibrations for*SU(5) × U(1) × U(1)*F-theory vacua*,*Phys. Rev.***D 88**(2013) 046005 [arXiv:1303.5054] [INSPIRE]. - [92]M. Cvetič, D. Klevers and H. Piragua,
*F-theory compactifications with multiple*U(1)*-factors: constructing elliptic fibrations with rational sections*,*JHEP***06**(2013) 067 [arXiv:1303.6970] [INSPIRE]. - [93]V. Braun, T.W. Grimm and J. Keitel,
*Geometric engineering in toric F-theory and GUTs with*U(1)*gauge factors*,*JHEP***12**(2013) 069 [arXiv:1306.0577] [INSPIRE]. - [94]M. Cvetič, A. Grassi, D. Klevers and H. Piragua,
*Chiral four-dimensional F-theory compactifications with*SU(5)*and multiple*U(1)*-factors*,*JHEP***04**(2014) 010 [arXiv:1306.3987] [INSPIRE]. - [95]M. Cvetič, D. Klevers and H. Piragua,
*F-theory compactifications with multiple*U(1)*-factors: addendum*,*JHEP***12**(2013) 056 [arXiv:1307.6425] [INSPIRE]. - [96]M. Cvetič, D. Klevers, H. Piragua and P. Song,
*Elliptic fibrations with rank three Mordell-Weil group: F-theory with*U(1) × U(1) × U(1)*gauge symmetry*,*JHEP***03**(2014) 021 [arXiv:1310.0463] [INSPIRE]. - [97]I. Antoniadis and G.K. Leontaris,
*F-GUTs with Mordell-Weil*U(1)*’s*,*Phys. Lett.***B 735**(2014) 226 [arXiv:1404.6720] [INSPIRE]. - [98]M. Esole, M.J. Kang and S.-T. Yau,
*A new model for elliptic fibrations with a rank one Mordell-Weil group: I. Singular fibers and semi-stable degenerations*, arXiv:1410.0003 [INSPIRE]. - [99]C. Lawrie, S. Schäfer-Nameki and J.-M. Wong,
*F-theory and all things rational: surveying*U(1)*symmetries with rational sections*,*JHEP***09**(2015) 144 [arXiv:1504.05593] [INSPIRE]. - [100]M. Cvetič, D. Klevers, H. Piragua and W. Taylor,
*General*U(1) × U(1)*F-theory compactifications and beyond: geometry of un-Higgsings and novel matter structure*,*JHEP***11**(2015) 204 [arXiv:1507.05954] [INSPIRE]. - [101]D.R. Morrison and D.S. Park,
*Tall sections from non-minimal transformations*,*JHEP***10**(2016) 033 [arXiv:1606.07444] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [102]M. Bies, C. Mayrhofer and T. Weigand,
*Gauge backgrounds and zero-mode counting in F-theory*,*JHEP***11**(2017) 081 [arXiv:1706.04616] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [103]M. Cvetič and L. Lin,
*The global gauge group structure of F-theory compactification with*U(1)*s*,*JHEP***01**(2018) 157 [arXiv:1706.08521]. - [104]M. Bies, C. Mayrhofer and T. Weigand,
*Algebraic cycles and local anomalies in F-theory*,*JHEP***11**(2017) 100 [arXiv:1706.08528] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [105]M. Esole, M.J. Kang and S.-T. Yau,
*Mordell-Weil torsion, anomalies and phase transitions*, arXiv:1712.02337 [INSPIRE]. - [106]Y. Kimura and S. Mizoguchi,
*Enhancements in F-theory models on moduli spaces of K*3*surfaces with ADE rank 17*,*PTEP***2018**(2018) 043B05 [arXiv:1712.08539] [INSPIRE]. - [107]
- [108]Y. Kimura,
*F-theory models on K*3*surfaces with various Mordell-Weil ranks — Constructions that use quadratic base change of rational elliptic surfaces*,*JHEP***05**(2018) 048 [arXiv:1802.05195] [INSPIRE]. - [109]S.-J. Lee, D. Regalado and T. Weigand, 6
*d SCFTs and*U(1)*flavour symmetries*,*JHEP***11**(2018) 147 [arXiv:1803.07998] [INSPIRE]. - [110]M. Esole and M.J. Kang,
*Characteristic numbers of elliptic fibrations with non-trivial Mordell-Weil groups*, arXiv:1808.07054 [INSPIRE]. - [111]S. Mizoguchi and T. Tani,
*Non-Cartan Mordell-Weil lattices of rational elliptic surfaces and heterotic/F-theory compactifications*, arXiv:1808.08001. - [112]M. Bershadsky et al.,
*Geometric singularities and enhanced gauge symmetries*,*Nucl. Phys.***B 481**(1996) 215 [hep-th/9605200] [INSPIRE]. - [113]
- [114]K. Kodaira,
*On compact analytic surfaces III*,*Ann. Math.***78**(1963) 1.MathSciNetCrossRefzbMATHGoogle Scholar - [115]A. Néron,
*Modèles minimaux des variétés abéliennes sur les corps locaux et globaux*,*Publ. Math. IHES***21**(1964) 5.CrossRefzbMATHGoogle Scholar - [116]J. Tate,
*Algorithm for determining the type of a singular fiber in an elliptic pencil*, in*Modular functions of one variable IV*, B.J. Birch and W. Kuyk eds., Springer, Berlin Germany (1975).Google Scholar - [117]J. Milnor,
*On simply connected 4-manifolds*, talk given at the*Symposium Internacional de Topologia Algebraica (International Symposium on Algebraic Topology)*, Mexico City, Mexico (1958).Google Scholar - [118]S. Kondo,
*Automorphisms of algebraic K*3*susfaces which act trivially on Picard groups*,*J. Math. Soc. Japan***44**(1992) 75.Google Scholar - [119]K.S. Narain, M.H. Sarmadi and E. Witten,
*A note on toroidal compactification of heterotic string theory*,*Nucl. Phys.***B 279**(1987) 369 [INSPIRE]. - [120]E.B. Vinberg,
*On the algebra of Siegel modular forms of genus 2*,*Trans. Moscow Math. Soc.***74 2013**1.Google Scholar - [121]J. Igusa,
*On Siegel modular forms of genus two*,*Amer. J. Math.***84**(1962) 175.MathSciNetCrossRefzbMATHGoogle Scholar - [122]
- [123]K.I. Nishiyama,
*The Jacobian fibrations on some K*3*surfaces and their Mordell-Weil groups*,*Japan. J. Math.***22**(1996), 293Google Scholar - [124]
- [125]R. Miranda and U. Persson,
*On extremal rational elliptic surfaces*,*Math. Z.***193**(1986) 537.MathSciNetCrossRefzbMATHGoogle Scholar - [126]
- [127]H. Inose,
*Defining equations of singular K*3*surfaces and a notion of isogeny*, proceedings of the*International Symposium on Algebraic Geometry*, January 10-14, Kyoto University, Kyoto, Japan (1977).Google Scholar - [128]I. Shimada and D.Q. Zhang,
*Classification of extremal elliptic K3 surfaces and fundamental groups of open K*3*surfaces*,*Nagoya Math. J.***161**(2001) 23 [math/0007171]. - [129]M.J. Bertin et al.,
*Classifications of elliptic fibrations of a singular K*3*surface*,*Women in Numbers Europe*(2015) 17 [arXiv:1501.07484]. - [130]M.J. Bertin and O. Lecacheux,
*Elliptic fibrations on the modular surface associated to*Γ_{1}(8), in*Arithmetic and geometry of K*3*surfaces and Calabi-Yau threefolds*, R. Laza et al. eds., Fields Institute Communications volume 67, Springer, Germany (2013) [arXiv:1105.6312]. - [131]
- [132]K. Utsumi,
*Jacobian fibrations on the singular K*3*surface of discriminant 3*,*J. Math. Soc. Japan***68**(2016) 1133, arXiv:1405.3577. - [133]N. Nakayama,
*On Weierstrass models*, in*Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata*, H. Hijikata ed., Academic Press, U.S.A. (1988).Google Scholar - [134]I. Dolgachev and M. Gross,
*Elliptic three-folds I: Ogg-Shafarevich theory*,*J. Alg. Geom.***3**(1994) 39.zbMATHGoogle Scholar - [135]M. Gross,
*Elliptic three-folds II: multiple fibres*,*Trans. Amer. Math. Soc.***349**(1997) 3409.MathSciNetCrossRefzbMATHGoogle Scholar - [136]P.S. Aspinwall and M. Gross,
*The*SO(32)*heterotic string on a K*3*surface*,*Phys. Lett.***B 387**(1996) 735 [hep-th/9605131] [INSPIRE]. - [137]P.S. Aspinwall and D.R. Morrison,
*Nonsimply connected gauge groups and rational points on elliptic curves*,*JHEP***07**(1998) 012 [hep-th/9805206] [INSPIRE].ADSCrossRefGoogle Scholar - [138]C. Mayrhofer, D.R. Morrison, O. Till and T. Weigand,
*Mordell-Weil torsion and the global structure of gauge groups in F-theory*,*JHEP***10**(2014) 16 [arXiv:1405.3656] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [139]M.B. Green, J.H. Schwarz and P.C. West,
*Anomaly free chiral theories in six-dimensions*,*Nucl. Phys.***B 254**(1985) 327 [INSPIRE]. - [140]A. Sagnotti,
*A note on the Green-Schwarz mechanism in open string theories*,*Phys. Lett.***B 294**(1992) 196 [hep-th/9210127] [INSPIRE]. - [141]J. Erler,
*Anomaly cancellation in six-dimensions*,*J. Math. Phys.***35**(1994) 1819 [hep-th/9304104] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [142]J.H. Schwarz,
*Anomaly-free supersymmetric models in six-dimensions*,*Phys. Lett.***B 371**(1996) 223 [hep-th/9512053] [INSPIRE]. - [143]F. Apruzzi, J.J. Heckman, D.R. Morrison and L. Tizzano, 4
*D gauge theories with conformal matter*,*JHEP***09**(2018) 088 [arXiv:1803.00582] [INSPIRE].