Advertisement

Journal of High Energy Physics

, 2019:35 | Cite as

Universal aspects of U(1) gauge field localization on branes in D-dimensions

  • L. F. F. FreitasEmail author
  • G. Alencar
  • R. R. Landim
Open Access
Regular Article - Theoretical Physics
  • 12 Downloads

Abstract

In this work, we study the general properties of the D-vector field localization on (Dd − 1)-brane with co-dimension d. We consider a conformally flat metric with the warp factor depending only on the transverse extra dimensions. We employ the geometrical coupling mechanism and find an analytical solution for the U(1) gauge field valid for any warp factor. Using this solution we find that the only condition necessary for localization is that the bulk geometry is asymptotically AdS. Therefore, our solution has an universal validity for any warp factor and is independent of the particular model considered. We also show that the model has no tachyonic modes. Finally, we study the scalar components of the D-vector field. As a general result, we show that if we consider the coupling with the tensor and the Ricci scalar in higher co-dimensions, there is an indication that both sectors will be localized. As a concrete example, the above techniques are applied for the intersecting brane model. We obtain that the branes introduce boundary conditions that fix all parameters of the model in such a way that both sectors, gauge and scalar fields, are confined.

Keywords

D-branes Effective Field Theories Field Theories in Higher Dimensions Large Extra Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. Nordstrom, On the possibility of unifying the electromagnetic and the gravitational fields, Phys. Z. 15 (1914) 504 [physics/0702221] [INSPIRE].
  2. [2]
    T. Kaluza, On the Problem of Unity in Physics, Sitz. Preuss. Akad. Wiss. Berlin. (Math. Phys.) 96 (1921) 966.Google Scholar
  3. [3]
    O. Klein, Quantentheorie und fünfdimensionale Relativitätstheorie, Z. Phys. A 37 (1926) 895.CrossRefzbMATHGoogle Scholar
  4. [4]
    O. Klein, The atomicity of electricity as a quantum theory law, Nature 118 (1926) 51.CrossRefGoogle Scholar
  5. [5]
    K. Akama, Pregeometry, Lect. Notes Phys. 176 (1982) 267.ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    K. Akama, An Early Proposal of ‘Brane World’, hep-th/0001113 [INSPIRE].
  7. [7]
    I. Marquez-Martin, G. Di Molfetta and A. Perez, Fermion confinement via Quantum Walks in 2D + 1 and 3D + 1 spacetime, Phys. Rev. A 95 (2017) 042112 [arXiv:1612.08027] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
  9. [9]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    S. Chang et al., Bulk standard model in the Randall-Sundrum background, Phys. Rev. D 62 (2000) 084025 [hep-ph/9912498] [INSPIRE].
  11. [11]
    I. Oda, Localization of various bulk fields on a brane, hep-th/0009074 [INSPIRE].
  12. [12]
    B. Bajc and G. Gabadadze, Localization of matter and cosmological constant on a brane in Anti-de Sitter space, Phys. Lett. B 474 (2000) 282 [hep-th/9912232] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Gremm, Four-dimensional gravity on a thick domain wall, Phys. Lett. B 478 (2000) 434 [hep-th/9912060] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Kehagias and K. Tamvakis, Localized gravitons, gauge bosons and chiral fermions in smooth spaces generated by a bounce, Phys. Lett. B 504 (2001) 38 [hep-th/0010112] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    D. Bazeia, J. Menezes and R. Menezes, New global defect structures, Phys. Rev. Lett. 91 (2003) 241601 [hep-th/0305234] [INSPIRE].
  16. [16]
    D. Bazeia and A.R. Gomes, Bloch brane, JHEP 05 (2004) 012 [hep-th/0403141] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    Y.-X. Liu, Z.-H. Zhao, S.-W. Wei and Y.-S. Duan, Bulk matters on symmetric and asymmetric De Sitter thick branes, JCAP 02 (2009) 003 [arXiv:0901.0782] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    H. Guo, A. Herrera-Aguilar, Y.-X. Liu, D. Malagon-Morejon and R.R. Mora-Luna, Localization of bulk matter fields, the hierarchy problem and corrections to Coulomb’s law on a pure de Sitter thick braneworld, Phys. Rev. D 87 (2013) 095011 [arXiv:1103.2430] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Gogberashvili and D. Singleton, Brane in 6D with increasing gravitational trapping potential, Phys. Rev. D 69 (2004) 026004 [hep-th/0305241] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  20. [20]
    J.E.G. Silva, V. Santos and C.A.S. Almeida, Gravity localization in a string-cigar braneworld, Class. Quant. Grav. 30 (2013) 025005 [arXiv:1208.2364] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali and N. Kaloper, Infinitely large new dimensions, Phys. Rev. Lett. 84 (2000) 586 [hep-th/9907209] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A.G. Cohen and D.B. Kaplan, Solving the hierarchy problem with noncompact extra dimensions, Phys. Lett. B 470 (1999) 52 [hep-th/9910132] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    J.E. Kim, B. Kyae and H.M. Lee, Localized gravity and mass hierarchy in D = 6 with a Gauss-Bonnet term, Phys. Rev. D 64 (2001) 065011 [hep-th/0104150].ADSGoogle Scholar
  24. [24]
    O. Corradini, A. Iglesias, Z. Kakushadze and P. Langfelder, Gravity on a 3-brane in 6D bulk, Phys. Lett. B 521 (2001) 96 [hep-th/0108055] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    N. Barbosa-Cendejas and A. Herrera-Aguilar, Localization of 4D gravity on pure geometrical thick branes, Phys. Rev. D 73 (2006) 084022 [Erratum ibid. D 77 (2008) 049901] [hep-th/0603184] [INSPIRE].
  26. [26]
    Y.-X. Liu, C.-E. Fu, H. Guo and H.-T. Li, Deformed brane with finite extra dimension, Phys. Rev. D 85 (2012) 084023 [arXiv:1102.4500] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S. Randjbar-Daemi and M.E. Shaposhnikov, Fermion zero modes on brane worlds, Phys. Lett. B 492 (2000) 361 [hep-th/0008079] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    R. Koley and S. Kar, Scalar kinks and fermion localisation in warped spacetimes, Class. Quant. Grav. 22 (2005) 753 [hep-th/0407158] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    C. Ringeval, P. Peter and J.-P. Uzan, Localization of massive fermions on the brane, Phys. Rev. D 65 (2002) 044016 [hep-th/0109194] [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    R.R. Landim et al., New analytical solutions for bosonic field trapping in thick branes, Phys. Lett. B 731 (2014) 131 [arXiv:1310.2147] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    A. Melfo, N. Pantoja and J.D. Tempo, Fermion localization on thick branes, Phys. Rev. D 73 (2006) 044033 [hep-th/0601161] [INSPIRE].
  32. [32]
    C.-E. Fu, Y. Zhong and Y.-X. Liu, U(1) gauge vector field on a codimension-2 brane, JHEP 01 (2019) 021 [arXiv:1810.02081] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Pomarol, Gauge bosons in a five-dimensional theory with localized gravity, Phys. Lett. B 486 (2000) 153 [hep-ph/9911294] [INSPIRE].
  34. [34]
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [INSPIRE].
  35. [35]
    P. Midodashvili, Brane in 6D and localization of matter fields, hep-th/0308003 [INSPIRE].
  36. [36]
    M. Giovannini, Gauge field localization on Abelian vortices in six-dimensions, Phys. Rev. D 66 (2002) 044016 [hep-th/0205139] [INSPIRE].
  37. [37]
    M.J. Duff and J.T. Liu, Hodge duality on the brane, Phys. Lett. B 508 (2001) 381 [hep-th/0010171] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    I. Oda, A new mechanism for trapping of photon, hep-th/0103052 [INSPIRE].
  39. [39]
    G.R. Dvali, G. Gabadadze and M.A. Shifman, (Quasi)localized gauge field on a brane: dissipating cosmic radiation to extra dimensions?, Phys. Lett. B 497 (2001) 271 [hep-th/0010071] [INSPIRE].
  40. [40]
    R. Guerrero, A. Melfo, N. Pantoja and R.O. Rodriguez, Gauge field localization on brane worlds, Phys. Rev. D 81 (2010) 086004 [arXiv:0912.0463] [INSPIRE].ADSGoogle Scholar
  41. [41]
    B. Batell and T. Gherghetta, Yang-Mills localization in warped space, Phys. Rev. D 75 (2007) 025022 [hep-th/0611305] [INSPIRE].
  42. [42]
    C.A. Vaquera-Araujo and O. Corradini, Localization of abelian gauge fields on thick branes, Eur. Phys. J. C 75 (2015) 48 [arXiv:1406.2892] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    W.T. Cruz, M.O. Tahim and C.A.S. Almeida, Gauge field localization on a dilatonic deformed brane, Phys. Lett. B 686 (2010) 259 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    W.T. Cruz, A.R.P. Lima and C.A.S. Almeida, Gauge field localization on the Bloch brane, Phys. Rev. D 87 (2013) 045018 [arXiv:1211.7355] [INSPIRE].ADSGoogle Scholar
  45. [45]
    K. Ghoroku and A. Nakamura, Massive vector trapping as a gauge boson on a brane, Phys. Rev. D 65 (2002) 084017 [hep-th/0106145] [INSPIRE].ADSMathSciNetGoogle Scholar
  46. [46]
    A. Flachi and M. Minamitsuji, Field localization on a brane intersection in anti-de Sitter spacetime, Phys. Rev. D 79 (2009) 104021 [arXiv:0903.0133] [INSPIRE].ADSGoogle Scholar
  47. [47]
    G. Alencar, R.R. Landim, M.O. Tahim and R.N. Costa Filho, Gauge field localization on the brane through geometrical coupling, Phys. Lett. B 739 (2014) 125 [arXiv:1409.4396] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    Z.-H. Zhao, Q.-Y. Xie and Y. Zhong, New localization method of U(1) gauge vector field on flat branes in (asymptotic) AdS 5 spacetime, Class. Quant. Grav. 32 (2015) 035020 [arXiv:1406.3098] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    R.R. Landim, G. Alencar, M.O. Tahim and R.N. Costa Filho, A transfer matrix method for resonances in Randall-Sundrum models, JHEP 08 (2011) 071 [arXiv:1105.5573] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  50. [50]
    I.C. Jardim, G. Alencar, R.R. Landim and R.N. Costa Filho, Does geometric coupling generates resonances?, EPL 115 (2016) 51001 [arXiv:1505.00689] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    I.C. Jardim, G. Alencar, R.R. Landim and R.N. Costa Filho, Massive p-form trapping as a p-form on a brane, JHEP 04 (2015) 003 [arXiv:1410.6756] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  52. [52]
    G. Alencar et al., Photon mass as a probe to extra dimensions, Phys. Lett. B 759 (2016) 138 [arXiv:1511.03608] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    G. Alencar et al., Generalized nonminimal couplings in Randall-Sundrum scenarios, Phys. Rev. D 93 (2016) 124064 [arXiv:1506.00622] [INSPIRE].ADSMathSciNetGoogle Scholar
  54. [54]
    G. Alencar, R.R. Landim, C.R. Muniz and R.N. Costa Filho, Nonminimal couplings in Randall-Sundrum scenarios, Phys. Rev. D 92 (2015) 066006 [arXiv:1502.02998] [INSPIRE].ADSMathSciNetGoogle Scholar
  55. [55]
    C. Csáki, J. Erlich, T.J. Hollowood and Y. Shirman, Universal aspects of gravity localized on thick branes, Nucl. Phys. B 581 (2000) 309 [hep-th/0001033] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    I. Oda, Localization of matters on a string-like defect, Phys. Lett. B 496 (2000) 113 [hep-th/0006203] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Universidade Federal do Ceará — UFC, Departamento de FísicaFortalezaBrazil

Personalised recommendations