Advertisement

Journal of High Energy Physics

, 2019:34 | Cite as

Supersymmetric Dirac-Born-Infeld axionic inflation and non-Gaussianity

  • Pran Nath
  • Maksim PiskunovEmail author
Open Access
Regular Article - Theoretical Physics
  • 14 Downloads

Abstract

An analysis is given of inflation based on a supersymmetric Dirac-Born-Infeld (DBI) action in an axionic landscape. The DBI model we discuss involves a landscape of chiral superfields with one U(1) shift symmetry which is broken by instanton type non-perturbative terms in the superpotential. Breaking of the shift symmetry leads to one pseudo-Nambu-Goldstone-boson which acts as the inflaton while the remaining normalized phases of the chiral fields generically labeled axions are invariant under the U(1) shift symmetry. The analysis is carried out in the vacuum with stabilized saxions, which are the magnitudes of the chiral fields. Regions of the parameter space where slow-roll inflation occurs are exhibited and the spectral indices as well as the ratio of the tensor to the scalar power spectrum are computed. An interesting aspect of supersymmetric DBI models analyzed is that in most of the parameter space tensor to scalar ratio and scalar spectral index are consistent with Planck data if slow roll occurs and is not eternal. Also interesting is that the ratio of the tensor to the scalar power spectrum can be large and can lie close to the experimental upper limit and thus testable in improved experiment. Non-Gaussianity in this class of models is explored.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].ADSzbMATHGoogle Scholar
  2. [2]
    A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    K. Sato, First Order Phase Transition of a Vacuum and Expansion of the Universe, Mon. Not. Roy. Astron. Soc. 195 (1981) 467 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A.D. Linde, Chaotic Inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    V.F. Mukhanov and G.V. Chibisov, Quantum Fluctuations and a Nonsingular Universe, JETP Lett. 33 (1981) 532 [Pisma Zh. Eksp. Teor. Fiz. 33 (1981) 549] [INSPIRE].
  8. [8]
    S.W. Hawking, The Development of Irregularities in a Single Bubble Inflationary Universe, Phys. Lett. B 115 (1982) 295 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A.A. Starobinsky, Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations, Phys. Lett. B 117 (1982) 175 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A.H. Guth and S.Y. Pi, Fluctuations in the New Inflationary Universe, Phys. Rev. Lett. 49 (1982) 1110 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J.M. Bardeen, P.J. Steinhardt and M.S. Turner, Spontaneous Creation of Almost Scale-Free Density Perturbations in an Inflationary Universe, Phys. Rev. D 28 (1983) 679 [INSPIRE].ADSGoogle Scholar
  12. [12]
    C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The Effective Field Theory of Inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    Planck collaboration, Planck 2015 results. I. Overview of products and scientific results, Astron. Astrophys. 594 (2016) A1 [arXiv:1502.01582] [INSPIRE].
  14. [14]
    Planck collaboration, Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].
  15. [15]
    BICEP2 and Keck Array collaborations, Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band, Phys. Rev. Lett. 116 (2016) 031302 [arXiv:1510.09217] [INSPIRE].
  16. [16]
    K. Freese, J.A. Frieman and A.V. Olinto, Natural inflation with pseudo Nambu-Goldstone bosons, Phys. Rev. Lett. 65 (1990) 3233 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    F.C. Adams, J.R. Bond, K. Freese, J.A. Frieman and A.V. Olinto, Natural inflation: Particle physics models, power law spectra for large scale structure and constraints from COBE, Phys. Rev. D 47 (1993) 426 [hep-ph/9207245] [INSPIRE].
  18. [18]
    T. Banks, M. Dine, P.J. Fox and E. Gorbatov, On the possibility of large axion decay constants, JCAP 06 (2003) 001 [hep-th/0303252] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    P. Svrček and E. Witten, Axions In String Theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP 01 (2005) 005 [hep-ph/0409138] [INSPIRE].
  21. [21]
    C. Long, L. McAllister and P. McGuirk, Aligned Natural Inflation in String Theory, Phys. Rev. D 90 (2014) 023501 [arXiv:1404.7852] [INSPIRE].ADSGoogle Scholar
  22. [22]
    P. Nath and M. Piskunov, Evidence for Inflation in an Axion Landscape, JHEP 03 (2018) 121 [arXiv:1712.01357] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    P. Nath, Supersymmetry, Supergravity, and Unification, Cambridge Monographs On Mathematical Physics, Cambridge University Press, Cambridge U.K. (2016) [INSPIRE].
  24. [24]
    J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].
  25. [25]
    D. Seery and J.E. Lidsey, Primordial non-Gaussianities in single field inflation, JCAP 06 (2005) 003 [astro-ph/0503692] [INSPIRE].
  26. [26]
    D. Seery and J.E. Lidsey, Primordial non-Gaussianities from multiple-field inflation, JCAP 09 (2005) 011 [astro-ph/0506056] [INSPIRE].
  27. [27]
    X. Chen, Running non-Gaussianities in DBI inflation, Phys. Rev. D 72 (2005) 123518 [astro-ph/0507053] [INSPIRE].
  28. [28]
    X. Chen, M.-x. Huang, S. Kachru and G. Shiu, Observational signatures and non-Gaussianities of general single field inflation, JCAP 01 (2007) 002 [hep-th/0605045] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D.H. Lyth and Y. Rodriguez, The Inflationary prediction for primordial non-Gaussianity, Phys. Rev. Lett. 95 (2005) 121302 [astro-ph/0504045] [INSPIRE].
  30. [30]
    M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505 [hep-th/0404084] [INSPIRE].ADSGoogle Scholar
  31. [31]
    D.A. Easson, R. Gregory, D.F. Mota, G. Tasinato and I. Zavala, Spinflation, JCAP 02 (2008) 010 [arXiv:0709.2666] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    M.-x. Huang, G. Shiu and B. Underwood, Multifield DBI Inflation and Non-Gaussianities, Phys. Rev. D 77 (2008) 023511 [arXiv:0709.3299] [INSPIRE].ADSGoogle Scholar
  33. [33]
    C. Gordon, D. Wands, B.A. Bassett and R. Maartens, Adiabatic and entropy perturbations from inflation, Phys. Rev. D 63 (2001) 023506 [astro-ph/0009131] [INSPIRE].
  34. [34]
    D. Langlois, S. Renaux-Petel, D.A. Steer and T. Tanaka, Primordial fluctuations and non-Gaussianities in multi-field DBI inflation, Phys. Rev. Lett. 101 (2008) 061301 [arXiv:0804.3139] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    N. Arkani-Hamed, H.-C. Cheng, P. Creminelli and L. Randall, Pseudonatural inflation, JCAP 07 (2003) 003 [hep-th/0302034] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    D.E. Kaplan and N.J. Weiner, Little inflatons and gauge inflation, JCAP 02 (2004) 005 [hep-ph/0302014] [INSPIRE].
  37. [37]
    D. Green, B. Horn, L. Senatore and E. Silverstein, Trapped Inflation, Phys. Rev. D 80 (2009) 063533 [arXiv:0902.1006] [INSPIRE].ADSGoogle Scholar
  38. [38]
    T. Higaki and F. Takahashi, Natural and Multi-Natural Inflation in Axion Landscape, JHEP 07 (2014) 074 [arXiv:1404.6923] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    T. Higaki and F. Takahashi, Axion Landscape and Natural Inflation, Phys. Lett. B 744 (2015) 153 [arXiv:1409.8409] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    K. Kadota, T. Kobayashi, A. Oikawa, N. Omoto, H. Otsuka and T.H. Tatsuishi, Small field axion inflation with sub-Planckian decay constant, JCAP 10 (2016) 013 [arXiv:1606.03219] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    T. Kobayashi, A. Oikawa, N. Omoto, H. Otsuka and I. Saga, Constraints on small-field axion inflation, Phys. Rev. D 95 (2017) 063514 [arXiv:1609.05624] [INSPIRE].ADSGoogle Scholar
  42. [42]
    S. Kachru, R. Kallosh, A.D. Linde, J.M. Maldacena, L.P. McAllister and S.P. Trivedi, Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    J.J. Blanco-Pillado et al., Racetrack inflation, JHEP 11 (2004) 063 [hep-th/0406230] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    M. Cicoli, K. Dutta, A. Maharana and F. Quevedo, Moduli Vacuum Misalignment and Precise Predictions in String Inflation, JCAP 08 (2016) 006 [arXiv:1604.08512] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    E. Pajer and M. Peloso, A review of Axion Inflation in the era of Planck, Class. Quant. Grav. 30 (2013) 214002 [arXiv:1305.3557] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    D.J.E. Marsh, Axion Cosmology, Phys. Rept. 643 (2016) 1 [arXiv:1510.07633] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    A. Ernst, A. Ringwald and C. Tamarit, Axion Predictions in SO(10) × U(1)PQ Models, JHEP 02 (2018) 103 [arXiv:1801.04906] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    S. Dimopoulos, S. Kachru, J. McGreevy and J.G. Wacker, N-flation, JCAP 08 (2008) 003 [hep-th/0507205] [INSPIRE];ADSCrossRefGoogle Scholar
  49. [49]
    A.R. Liddle, A. Mazumdar and F.E. Schunck, Assisted inflation, Phys. Rev. D 58 (1998) 061301 [astro-ph/9804177] [INSPIRE].
  50. [50]
    J. Khoury, J.-L. Lehners and B. Ovrut, Supersymmetric P(X, ϕ) and the Ghost Condensate, Phys. Rev. D 83 (2011) 125031 [arXiv:1012.3748] [INSPIRE].ADSGoogle Scholar
  51. [51]
    J. Khoury, J.-L. Lehners and B.A. Ovrut, Supersymmetric Galileons, Phys. Rev. D 84 (2011) 043521 [arXiv:1103.0003] [INSPIRE].ADSGoogle Scholar
  52. [52]
    D. Baumann and D. Green, Signatures of Supersymmetry from the Early Universe, Phys. Rev. D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].ADSGoogle Scholar
  53. [53]
    D. Baumann and D. Green, Supergravity for Effective Theories, JHEP 03 (2012) 001 [arXiv:1109.0293] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    M. Roček and A.A. Tseytlin, Partial breaking of global D = 4 supersymmetry, constrained superfields and three-brane actions, Phys. Rev. D 59 (1999) 106001 [hep-th/9811232] [INSPIRE].ADSGoogle Scholar
  55. [55]
    A.A. Tseytlin, Born-Infeld action, supersymmetry and string theory, in The many faces of the superworld, M.A. Shifman ed., World Scientific (2000), pp. 417–452 [hep-th/9908105] [INSPIRE].
  56. [56]
    K. Ito, H. Nakajima and S. Sasaki, Deformation of super Yang-Mills theories in RR 3-form background, JHEP 07 (2007) 068 [arXiv:0705.3532] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Billó, L. Ferro, M. Frau, F. Fucito, A. Lerda and J.F. Morales, Flux interactions on D-branes and instantons, JHEP 10 (2008) 112 [arXiv:0807.1666] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    S. Sasaki, M. Yamaguchi and D. Yokoyama, Supersymmetric DBI inflation, Phys. Lett. B 718 (2012) 1 [arXiv:1205.1353] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    S. Aoki and Y. Yamada, More on DBI action in 4D \( \mathcal{N} \) = 1 supergravity, JHEP 01 (2017) 121 [arXiv:1611.08426] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    J. Halverson, C. Long and P. Nath, Ultralight axion in supersymmetry and strings and cosmology at small scales, Phys. Rev. D 96 (2017) 056025 [arXiv:1703.07779] [INSPIRE].ADSGoogle Scholar
  61. [61]
    J. Garriga and V.F. Mukhanov, Perturbations in k-inflation, Phys. Lett. B 458 (1999) 219 [hep-th/9904176] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    C. Armendariz-Picon, T. Damour and V.F. Mukhanov, k-inflation, Phys. Lett. B 458 (1999) 209 [hep-th/9904075] [INSPIRE].
  63. [63]
    V. Acquaviva, N. Bartolo, S. Matarrese and A. Riotto, Second order cosmological perturbations from inflation, Nucl. Phys. B 667 (2003) 119 [astro-ph/0209156] [INSPIRE].
  64. [64]
    P. Creminelli, On non-Gaussianities in single-field inflation, JCAP 10 (2003) 003 [astro-ph/0306122] [INSPIRE].
  65. [65]
    E. Silverstein and D. Tong, Scalar speed limits and cosmology: Acceleration from D-cceleration, Phys. Rev. D 70 (2004) 103505 [hep-th/0310221] [INSPIRE].ADSMathSciNetGoogle Scholar
  66. [66]
    A. Gruzinov, Consistency relation for single scalar inflation, Phys. Rev. D 71 (2005) 027301 [astro-ph/0406129] [INSPIRE].
  67. [67]
    P. Creminelli, A. Nicolis, L. Senatore, M. Tegmark and M. Zaldarriaga, Limits on non-Gaussianities from WMAP data, JCAP 05 (2006) 004 [astro-ph/0509029] [INSPIRE].
  68. [68]
    D. Babich, P. Creminelli and M. Zaldarriaga, The Shape of non-Gaussianities, JCAP 08 (2004) 009 [astro-ph/0405356] [INSPIRE].
  69. [69]
    Planck collaboration, Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys. 594 (2016) A17 [arXiv:1502.01592] [INSPIRE].
  70. [70]
    E. Komatsu and D.N. Spergel, Acoustic signatures in the primary microwave background bispectrum, Phys. Rev. D 63 (2001) 063002 [astro-ph/0005036] [INSPIRE].
  71. [71]
    WMAP collaboration, First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: tests of Gaussianity, Astrophys. J. Suppl. 148 (2003) 119 [astro-ph/0302223] [INSPIRE].
  72. [72]
    L. Verde, L.-M. Wang, A. Heavens and M. Kamionkowski, Large scale structure, the cosmic microwave background and primordial non-Gaussianity, Mon. Not. Roy. Astron. Soc. 313 (2000) L141 [astro-ph/9906301] [INSPIRE].
  73. [73]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
  74. [74]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsNortheastern UniversityBostonU.S.A.

Personalised recommendations