Journal of High Energy Physics

, 2019:29 | Cite as

Searching for production of dark matter in association with top quarks at the LHC

  • Ulrich HaischEmail author
  • Giacomo Polesello
Open Access
Regular Article - Experimental Physics


In the framework of spin-0 s-channel dark matter (DM) simplified models, we reassess the sensitivity of future LHC runs to the production of DM in association with top quarks. We consider two different missing transverse energy (E T miss ) signatures, namely production of DM in association with either a \( t\overline{t} \) pair or a top quark and a W boson, where the latter channel has not been the focus of a dedicated analysis prior to this work. Final states with two leptons are studied and a realistic analysis strategy is developed that simultaneously takes into account both channels. Compared to other existing search strategies the proposed combination of \( t\overline{t}+{E}_T^{\mathrm{miss}} \) and tW + E T miss production provides a significantly improved coverage of the parameter space of spin-0 s-channel DM simplified models.


Dark matter Hadron-Hadron scattering (experiments) 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J. Abdallah et al., Simplified Models for Dark Matter Searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8 [arXiv:1506.03116] [INSPIRE].
  2. [2]
    D. Abercrombie et al., Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum, arXiv:1507.00966 [INSPIRE].
  3. [3]
    G. Busoni et al., Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter, arXiv:1603.04156 [INSPIRE].
  4. [4]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
  5. [5]
    M.R. Buckley, D. Feld and D. Goncalves, Scalar Simplified Models for Dark Matter, Phys. Rev. D 91 (2015) 015017 [arXiv:1410.6497] [INSPIRE].ADSGoogle Scholar
  6. [6]
    U. Haisch and E. Re, Simplified dark matter top-quark interactions at the LHC, JHEP 06 (2015) 078 [arXiv:1503.00691] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Backović, M. Krämer, F. Maltoni, A. Martini, K. Mawatari and M. Pellen, Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators, Eur. Phys. J. C 75 (2015) 482 [arXiv:1508.05327] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M.R. Buckley and D. Goncalves, Constraining the Strength and CP Structure of Dark Production at the LHC: the Associated Top-Pair Channel, Phys. Rev. D 93 (2016) 034003 [arXiv:1511.06451] [INSPIRE].ADSGoogle Scholar
  9. [9]
    C. Arina et al., A comprehensive approach to dark matter studies: exploration of simplified top-philic models, JHEP 11 (2016) 111 [arXiv:1605.09242] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    U. Haisch, P. Pani and G. Polesello, Determining the CP nature of spin-0 mediators in associated production of dark matter and \( t\overline{t} \) pairs, JHEP 02 (2017) 131 [arXiv:1611.09841] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    D. Pinna, A. Zucchetta, M.R. Buckley and F. Canelli, Single top quarks and dark matter, Phys. Rev. D 96 (2017) 035031 [arXiv:1701.05195] [INSPIRE].ADSGoogle Scholar
  12. [12]
    CMS collaboration, Search for dark matter produced in association with a single top quark or a top quark pair, CMS-PAS-EXO-18-010 [INSPIRE].
  13. [13]
    ATLAS collaboration, ATLAS sensitivity to dark matter produced in association with heavy quarks at the HL-LHC, ATL-PHYS-PUB-2018-036 (2018).
  14. [14]
    T. Plehn, J. Thompson and S. Westhoff, Dark Matter from Electroweak Single Top Production, Phys. Rev. D 98 (2018) 015012 [arXiv:1712.08065] [INSPIRE].ADSGoogle Scholar
  15. [15]
    P. Pani and G. Polesello, Dark matter production in association with a single top-quark at the LHC in a two-Higgs-doublet model with a pseudoscalar mediator, Phys. Dark Univ. 21 (2018) 8 [arXiv:1712.03874] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    S. Ipek, D. McKeen and A.E. Nelson, A Renormalizable Model for the Galactic Center Gamma Ray Excess from Dark Matter Annihilation, Phys. Rev. D 90 (2014) 055021 [arXiv:1404.3716] [INSPIRE].ADSGoogle Scholar
  17. [17]
    J.M. No, Looking through the pseudoscalar portal into dark matter: Novel mono-Higgs and mono-Z signatures at the LHC, Phys. Rev. D 93 (2016) 031701 [arXiv:1509.01110] [INSPIRE].ADSGoogle Scholar
  18. [18]
    D. Goncalves, P.A.N. Machado and J.M. No, Simplified Models for Dark Matter Face their Consistent Completions, Phys. Rev. D 95 (2017) 055027 [arXiv:1611.04593] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Bauer, U. Haisch and F. Kahlhoefer, Simplified dark matter models with two Higgs doublets: I. Pseudoscalar mediators, JHEP 05 (2017) 138 [arXiv:1701.07427] [INSPIRE].
  20. [20]
    P. Tunney, J.M. No and M. Fairbairn, Probing the pseudoscalar portal to dark matter via Open image in new window : From the LHC to the Galactic Center excess, Phys. Rev. D 96 (2017) 095020 [arXiv:1705.09670] [INSPIRE].
  21. [21]
    LHC Dark Matter Working Group collaboration, LHC Dark Matter Working Group: Next-generation spin-0 dark matter models, arXiv:1810.09420 [INSPIRE].
  22. [22]
    N.F. Bell, G. Busoni and I.W. Sanderson, Self-consistent Dark Matter Simplified Models with an s-channel scalar mediator, JCAP 03 (2017) 015 [arXiv:1612.03475] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    N.F. Bell, Y. Cai, J.B. Dent, R.K. Leane and T.J. Weiler, Dark matter at the LHC: Effective field theories and gauge invariance, Phys. Rev. D 92 (2015) 053008 [arXiv:1503.07874] [INSPIRE].ADSGoogle Scholar
  24. [24]
    F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016 [arXiv:1510.02110] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    N.F. Bell, Y. Cai and R.K. Leane, Mono-W Dark Matter Signals at the LHC: Simplified Model Analysis, JCAP 01 (2016) 051 [arXiv:1512.00476] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    U. Haisch, F. Kahlhoefer and T.M.P. Tait, On Mono-W Signatures in Spin-1 Simplified Models, Phys. Lett. B 760 (2016) 207 [arXiv:1603.01267] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C. Englert, M. McCullough and M. Spannowsky, S-Channel Dark Matter Simplified Models and Unitarity, Phys. Dark Univ. 14 (2016) 48 [arXiv:1604.07975] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    S. Dawson, The Effective W Approximation, Nucl. Phys. B 249 (1985) 42 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G.L. Kane, W.W. Repko and W.B. Rolnick, The Effective W ± , Z 0 Approximation for High-Energy Collisions, Phys. Lett. 148B (1984) 367 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Associated production of Higgs and single top at hadron colliders, Phys. Rev. D 64 (2001) 094023 [hep-ph/0106293] [INSPIRE].
  31. [31]
    M. Farina, C. Grojean, F. Maltoni, E. Salvioni and A. Thamm, Lifting degeneracies in Higgs couplings using single top production in association with a Higgs boson, JHEP 05 (2013) 022 [arXiv:1211.3736] [INSPIRE].ADSGoogle Scholar
  32. [32]
    S. Dawson and L. Reina, QCD corrections to associated Higgs boson production, Phys. Rev. D 57 (1998) 5851 [hep-ph/9712400] [INSPIRE].
  33. [33]
    S. Dittmaier, M. Krämer, Y. Liao, M. Spira and P.M. Zerwas, Higgs radiation off quarks in supersymmetric theories at e + e colliders, Phys. Lett. B 478 (2000) 247 [hep-ph/0002035] [INSPIRE].
  34. [34]
    G. Bélanger, R.M. Godbole, C.K. Khosa and S.D. Rindani, Probing CP nature of a mediator in associated production of dark matter with single top quark, in 11th International Workshop on Top Quark Physics (TOP2018) Bad Neuenahr, Germany, September 16–21, 2018, arXiv:1811.11048 [INSPIRE].
  35. [35]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  37. [37]
    P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  39. [39]
    F. Demartin, B. Maier, F. Maltoni, K. Mawatari and M. Zaro, tWH associated production at the LHC, Eur. Phys. J. C 77 (2017) 34 [arXiv:1607.05862] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    U. Haisch and G. Polesello, Searching for heavy Higgs bosons in the \( t\overline{t}Z \) and tbW final states, JHEP 09 (2018) 151 [arXiv:1807.07734] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, Single-top hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    ATLAS collaboration, Search for dark matter produced in association with bottom or top quarks in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 78 (2018) 18 [arXiv:1710.11412] [INSPIRE].
  43. [43]
    J.M. Campbell, R.K. Ellis, P. Nason and E. Re, Top-Pair Production and Decay at NLO Matched with Parton Showers, JHEP 04 (2015) 114 [arXiv:1412.1828] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J. C 71 (2011) 1547 [arXiv:1009.2450] [INSPIRE].ADSGoogle Scholar
  45. [45]
    T. Melia, P. Nason, R. Röntsch and G. Zanderighi, W + W , WZ and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    P. Nason and G. Zanderighi, W + W , WZ and ZZ production in the POWHEG-BOX-V2, Eur. Phys. J. C 74 (2014) 2702 [arXiv:1311.1365] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    M. Czakon and A. Mitov, Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through \( \mathcal{O}\left({\alpha}_S^4\right) \), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].
  51. [51]
    R. Gavin, Y. Li, F. Petriello and S. Quackenbush, W Physics at the LHC with FEWZ 2.1, Comput. Phys. Commun. 184 (2013) 208 [arXiv:1201.5896] [INSPIRE].
  52. [52]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  54. [54]
    ATLAS collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003 [INSPIRE].
  55. [55]
    ATLAS collaboration,, Expected performance of the ATLAS experiment: detector, trigger and physics, CERN-OPEN-2008-020 [INSPIRE].
  56. [56]
    C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [INSPIRE].
  57. [57]
    A. Barr, C. Lester and P. Stephens, m(T2): The truth behind the glamour, J. Phys. G 29 (2003) 2343 [hep-ph/0304226] [INSPIRE].
  58. [58]
    ATLAS collaboration, Technical Design Report for the Phase-II Upgrade of the ATLAS TDAQ System, CERN-LHCC-2017-020 (2017).
  59. [59]
    A.L. Read, Presentation of search results: The CL(s) technique, J. Phys. G 28 (2002) 2693 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    L. Moneta et al., The RooStats Project, PoS(ACAT2010)057 (2010) [arXiv:1009.1003] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Max Planck Institute for PhysicsMünchenGermany
  2. 2.INFN, Sezione di PaviaPaviaItaly

Personalised recommendations