Journal of High Energy Physics

, 2019:28 | Cite as

Loop corrections to dark matter direct detection in a pseudoscalar mediator dark matter model

  • Tomohiro Abe
  • Motoko FujiwaraEmail author
  • Junji Hisano
Open Access
Regular Article - Experimental Physics


If dark matter (DM) is a fermion and its interactions with the standard model particles are mediated by pseudoscalar particles, the tree-level amplitude for the DM-nucleon elastic scattering is suppressed by the momentum transfer in the non-relativistic limit. At the loop level, on the other hand, the spin-independent contribution to the cross section appears without such suppression. Thus, the loop corrections are essential to discuss the sensitivities of the direct detection experiments for the model prediction. The one-loop corrections were investigated in the previous works. However, the two-loop diagrams give the leading order contribution to the DM-gluon effective operator \( \left(\overline{\chi}\chi {G}_{\mu \nu}^{\alpha }{G}^{\alpha \mu \nu}\right) \) and have not been correctly evaluated yet. Moreover, some interaction terms which affect the scattering cross section were overlooked. In this paper, we show the cross section obtained by the improved analysis and discuss the region where the cross section becomes large.


Beyond Standard Model Cosmology of Theories beyond the SM Effective Field Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    LUX collaboration, Limits on spin-dependent WIMP-nucleon cross section obtained from the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 251302 [arXiv:1705.03380] [INSPIRE].
  2. [2]
    PandaX-II collaboration, Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
  3. [3]
    XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  4. [4]
    M. Escudero, A. Berlin, D. Hooper and M.-X. Lin, Toward (Finally!) Ruling Out Z and Higgs Mediated Dark Matter Models, JCAP 12 (2016) 029 [arXiv:1609.09079] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Escudero, D. Hooper and S.J. Witte, Updated Collider and Direct Detection Constraints on Dark Matter Models for the Galactic Center Gamma-Ray Excess, JCAP 02 (2017) 038 [arXiv:1612.06462] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Ipek, D. McKeen and A.E. Nelson, A Renormalizable Model for the Galactic Center Gamma Ray Excess from Dark Matter Annihilation, Phys. Rev. D 90 (2014) 055021 [arXiv:1404.3716] [INSPIRE].ADSGoogle Scholar
  7. [7]
    J.M. No, Looking through the pseudoscalar portal into dark matter: Novel mono-Higgs and mono-Z signatures at the LHC, Phys. Rev. D 93 (2016) 031701 [arXiv:1509.01110] [INSPIRE].ADSGoogle Scholar
  8. [8]
    D. Goncalves, P.A.N. Machado and J.M. No, Simplified Models for Dark Matter Face their Consistent Completions, Phys. Rev. D 95 (2017) 055027 [arXiv:1611.04593] [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Bauer, U. Haisch and F. Kahlhoefer, Simplified dark matter models with two Higgs doublets: I. Pseudoscalar mediators, JHEP 05 (2017) 138 [arXiv:1701.07427] [INSPIRE].
  10. [10]
    P. Tunney, J.M. No and M. Fairbairn, Probing the pseudoscalar portal to dark matter via Open image in new window : From the LHC to the Galactic Center excess, Phys. Rev. D 96 (2017) 095020 [arXiv:1705.09670] [INSPIRE].
  11. [11]
    G. Arcadi, M. Lindner, F.S. Queiroz, W. Rodejohann and S. Vogl, Pseudoscalar Mediators: A WIMP model at the Neutrino Floor, JCAP 03 (2018) 042 [arXiv:1711.02110] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    P. Pani and G. Polesello, Dark matter production in association with a single top-quark at the LHC in a two-Higgs-doublet model with a pseudoscalar mediator, Phys. Dark Univ. 21 (2018) 8 [arXiv:1712.03874] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    N.F. Bell, G. Busoni and I.W. Sanderson, Loop Effects in Direct Detection, JCAP 08 (2018) 017 [Erratum ibid. 01 (2019) E01] [arXiv:1803.01574] [INSPIRE].
  14. [14]
    T. Li, Revisiting the direct detection of dark matter in simplified models, Phys. Lett. B 782 (2018) 497 [arXiv:1804.02120] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    K. Ghorbani, Fermionic dark matter with pseudo-scalar Yukawa interaction, JCAP 01 (2015) 015 [arXiv:1408.4929] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    T. Abe, R. Kitano and R. Sato, Discrimination of dark matter models in future experiments, Phys. Rev. D 91 (2015) 095004 [Erratum ibid. D 96 (2017) 019902] [arXiv:1411.1335] [INSPIRE].
  17. [17]
    S. Baek, P. Ko and J. Li, Minimal renormalizable simplified dark matter model with a pseudoscalar mediator, Phys. Rev. D 95 (2017) 075011 [arXiv:1701.04131] [INSPIRE].ADSGoogle Scholar
  18. [18]
    T. Abe, Effect of CP-violation in the singlet-doublet dark matter model, Phys. Lett. B 771 (2017) 125 [arXiv:1702.07236] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].ADSGoogle Scholar
  20. [20]
    XENON collaboration, Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].
  21. [21]
    LUX and LZ collaborations, The Present and Future of Searching for Dark Matter with LUX and LZ, PoS(ICHEP2016)220 (2016) [arXiv:1611.05525] [INSPIRE].
  22. [22]
    DARWIN collaboration, DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017 [arXiv:1606.07001] [INSPIRE].
  23. [23]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Remarks on Higgs Boson Interactions with Nucleons, Phys. Lett. 78B (1978) 443 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    V.D. Barger, J.L. Hewett and R.J.N. Phillips, New Constraints on the Charged Higgs Sector in Two Higgs Doublet Models, Phys. Rev. D 41 (1990) 3421 [INSPIRE].ADSGoogle Scholar
  25. [25]
    Y. Grossman, Phenomenology of models with more than two Higgs doublets, Nucl. Phys. B 426 (1994) 355 [hep-ph/9401311] [INSPIRE].
  26. [26]
    M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Models of Yukawa interaction in the two Higgs doublet model and their collider phenomenology, Phys. Rev. D 80 (2009) 015017 [arXiv:0902.4665] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].ADSGoogle Scholar
  28. [28]
    X. Liu, L. Bian, X.-Q. Li and J. Shu, Type-III two Higgs doublet model plus a pseudoscalar confronted with hμτ, muon g − 2 and dark matter, Nucl. Phys. B 909 (2016) 507 [arXiv:1508.05716] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV collected with the ATLAS experiment, ATLAS-CONF-2018-031 [INSPIRE].
  30. [30]
    CMS collaboration, Combined measurements of Higgs boson couplings in proton-proton collisions at \( \sqrt{s}=13 \) TeV, arXiv:1809.10733 [INSPIRE].
  31. [31]
    M. Misiak and M. Steinhauser, Weak radiative decays of the B meson and bounds on \( {M}_{H^{\pm }} \) in the Two-Higgs-Doublet Model, Eur. Phys. J. C 77 (2017) 201 [arXiv:1702.04571] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    ATLAS collaboration, Search for heavy resonances decaying into a W or Z boson and a Higgs boson in final states with leptons and b-jets in 36 fb −1 of \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, JHEP 03 (2018) 174 [Erratum ibid. 11 (2018) 051] [arXiv:1712.06518] [INSPIRE].
  33. [33]
    CMS collaboration, Search for a heavy pseudoscalar boson decaying to a Z boson and a Higgs boson at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-18-005 [INSPIRE].
  34. [34]
    CMS collaboration, Combined measurements of the Higgs boson’s couplings at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-031 [INSPIRE].
  35. [35]
    J. Hisano, Effective theory approach to direct detection of dark matter, arXiv:1712.02947 [INSPIRE].
  36. [36]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3 : A program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].
  38. [38]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Calculations in External Fields in Quantum Chromodynamics. Technical Review, Fortsch. Phys. 32 (1984) 585 [INSPIRE].
  39. [39]
    J. Hisano, K. Ishiwata and N. Nagata, Gluon contribution to the dark matter direct detection, Phys. Rev. D 82 (2010) 115007 [arXiv:1007.2601] [INSPIRE].ADSGoogle Scholar
  40. [40]
    T. Abe and R. Sato, Quantum corrections to the spin-independent cross section of the inert doublet dark matter, JHEP 03 (2015) 109 [arXiv:1501.04161] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  42. [42]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
  43. [43]
    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Direct detection of the Wino and Higgsino-like neutralino dark matters at one-loop level, Phys. Rev. D 71 (2005) 015007 [hep-ph/0407168] [INSPIRE].
  44. [44]
    J. Hisano, K. Ishiwata and N. Nagata, A complete calculation for direct detection of Wino dark matter, Phys. Lett. B 690 (2010) 311 [arXiv:1004.4090] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J. Hisano, K. Ishiwata and N. Nagata, QCD Effects on Direct Detection of Wino Dark Matter, JHEP 06 (2015) 097 [arXiv:1504.00915] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Tomohiro Abe
    • 1
    • 2
  • Motoko Fujiwara
    • 3
    Email author
  • Junji Hisano
    • 2
    • 3
    • 4
  1. 1.Institute for Advanced Research, Nagoya UniversityNagoyaJapan
  2. 2.Kobayashi-Maskawa Institute for the Origin of Particles and the UniverseNagoya UniversityNagoyaJapan
  3. 3.Department of PhysicsNagoya UniversityNagoyaJapan
  4. 4.Kavli IPMU (WPI), UTIASUniversity of TokyoKashiwaJapan

Personalised recommendations