Advertisement

Journal of High Energy Physics

, 2019:27 | Cite as

Hadronic corrections to μ-e scattering at NNLO with space-like data

  • Matteo FaelEmail author
Open Access
Regular Article - Theoretical Physics
  • 5 Downloads

Abstract

The Standard Model prediction for μ-e scattering at Next-to-Next-to-Leading Order (NNLO) contains non-perturbative QCD contributions given by diagrams with a hadronic vacuum polarization insertion in the photon propagator. By taking advantage of the hyperspherical integration method, we show that the subset of hadronic NNLO corrections where the vacuum polarization appears inside a loop, the irreducible diagrams, can be calculated employing the hadronic vacuum polarization in the space-like region, without making use of the R ratio and time-like data. We present the analytic expressions of the kernels necessary to evaluate numerically the two types of irreducible diagrams: the two-loop vertex and box corrections. As a cross check, we evaluate these corrections numerically and we compare them with the results given by the traditional dispersive approach and with analytic two-loop vertex results in QED.

Keywords

Nonperturbative Effects Precision QED 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Muon g-2 collaboration, Muon (g − 2) technical design report, arXiv:1501.06858 [INSPIRE].
  2. [2]
    J-PARC and g-2/EDM collaborations, A novel precision measurement of muon g − 2 and EDM at J-PARC, AIP Conf. Proc. 1467 (2012) 45 [INSPIRE].
  3. [3]
    Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  4. [4]
    C. Bouchiat and L. Michel, La résonance dans la diffusion méson méson le moment magnétique anormal du méson (in French), J. Phys. Radium 22 (1961) 121.Google Scholar
  5. [5]
    L. Durand, Pionic contributions to the magnetic moment of the muon, Phys. Rev. 128 (1962) 441 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Gourdin and E. De Rafael, Hadronic contributions to the muon g-factor, Nucl. Phys. B 10 (1969) 667 [INSPIRE].
  7. [7]
    F. Jegerlehner, Variations on photon vacuum polarization, arXiv:1711.06089 [INSPIRE].
  8. [8]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and α(m Z2) using newest hadronic cross-section data, Eur. Phys. J. C 77 (2017) 827 [arXiv:1706.09436] [INSPIRE].
  9. [9]
    A. Keshavarzi, D. Nomura and T. Teubner, Muon g − 2 and α(m Z2): a new data-based analysis, Phys. Rev. D 97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].
  10. [10]
    C. Aubin and T. Blum, Calculating the hadronic vacuum polarization and leading hadronic contribution to the muon anomalous magnetic moment with improved staggered quarks, Phys. Rev. D 75 (2007) 114502 [hep-lat/0608011] [INSPIRE].
  11. [11]
    P. Boyle, L. Del Debbio, E. Kerrane and J. Zanotti, Lattice determination of the hadronic contribution to the muon g − 2 using dynamical domain wall fermions, Phys. Rev. D 85 (2012) 074504 [arXiv:1107.1497] [INSPIRE].
  12. [12]
    X. Feng, K. Jansen, M. Petschlies and D.B. Renner, Two-flavor QCD correction to lepton magnetic moments at leading-order in the electromagnetic coupling, Phys. Rev. Lett. 107 (2011) 081802 [arXiv:1103.4818] [INSPIRE].
  13. [13]
    M. Della Morte, B. Jager, A. Juttner and H. Wittig, Towards a precise lattice determination of the leading hadronic contribution to (g − 2)μ, JHEP 03 (2012) 055 [arXiv:1112.2894] [INSPIRE].
  14. [14]
    T. Blum et al., Calculation of the hadronic vacuum polarization disconnected contribution to the muon anomalous magnetic moment, Phys. Rev. Lett. 116 (2016) 232002 [arXiv:1512.09054] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    B. Chakraborty, C.T.H. Davies, P.G. de Oliviera, J. Koponen, G.P. Lepage and R.S. Van de Water, The hadronic vacuum polarization contribution to a μ from full lattice QCD, Phys. Rev. D 96 (2017) 034516 [arXiv:1601.03071] [INSPIRE].
  16. [16]
    S. Borsányi et al., Slope and curvature of the hadronic vacuum polarization at vanishing virtuality from lattice QCD, Phys. Rev. D 96 (2017) 074507 [arXiv:1612.02364] [INSPIRE].
  17. [17]
    Budapest-Marseille-Wuppertal collaboration, Hadronic vacuum polarization contribution to the anomalous magnetic moments of leptons from first principles, Phys. Rev. Lett. 121 (2018) 022002 [arXiv:1711.04980] [INSPIRE].
  18. [18]
    H.B. Meyer and H. Wittig, Lattice QCD and the anomalous magnetic moment of the muon, Prog. Part. Nucl. Phys. 104 (2019) 46 [arXiv:1807.09370] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A.V. Nesterenko, Hadronic vacuum polarization function within dispersive approach to QCD, J. Phys. G 42 (2015) 085004 [arXiv:1411.2554] [INSPIRE].
  20. [20]
    F. Hagelstein and V. Pascalutsa, Dissecting the hadronic contributions to (g − 2)μ by Schwinger’s sum rule, Phys. Rev. Lett. 120 (2018) 072002 [arXiv:1710.04571] [INSPIRE].
  21. [21]
    J. Charles, E. de Rafael and D. Greynat, Mellin-Barnes approach to hadronic vacuum polarization and g μ − 2, Phys. Rev. D 97 (2018) 076014 [arXiv:1712.02202] [INSPIRE].
  22. [22]
    C.M. Carloni Calame, M. Passera, L. Trentadue and G. Venanzoni, A new approach to evaluate the leading hadronic corrections to the muon g − 2, Phys. Lett. B 746 (2015) 325 [arXiv:1504.02228] [INSPIRE].
  23. [23]
    G. Abbiendi et al., Measuring the leading hadronic contribution to the muon g − 2 via μe scattering, Eur. Phys. J. C 77 (2017) 139 [arXiv:1609.08987] [INSPIRE].
  24. [24]
    B.E. Lautrup, A. Peterman and E. de Rafael, Recent developments in the comparison between theory and experiments in quantum electrodynamics, Phys. Rept. 3 (1972) 193 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    C.M. Carloni Calame, C. Lunardini, G. Montagna, O. Nicrosini and F. Piccinini, Large angle Bhabha scattering and luminosity at flavor factories, Nucl. Phys. B 584 (2000) 459 [hep-ph/0003268] [INSPIRE].
  26. [26]
    C.M. Carloni Calame, An improved parton shower algorithm in QED, Phys. Lett. B 520 (2001) 16 [hep-ph/0103117] [INSPIRE].
  27. [27]
    C.M. Carloni Calame, G. Montagna, O. Nicrosini and F. Piccinini, The BABAYAGA event generator, Nucl. Phys. Proc. Suppl. 131 (2004) 48 [hep-ph/0312014] [INSPIRE].
  28. [28]
    G. Balossini, C.M. Carloni Calame, G. Montagna, O. Nicrosini and F. Piccinini, Matching perturbative and parton shower corrections to Bhabha process at flavour factories, Nucl. Phys. B 758 (2006) 227 [hep-ph/0607181] [INSPIRE].
  29. [29]
    G. Balossini, C. Bignamini, C.M.C. Calame, G. Montagna, O. Nicrosini and F. Piccinini, Photon pair production at flavour factories with per mille accuracy, Phys. Lett. B 663 (2008) 209 [arXiv:0801.3360] [INSPIRE].
  30. [30]
    P. Mastrolia, M. Passera, A. Primo and U. Schubert, Master integrals for the NNLO virtual corrections to μe scattering in QED: the planar graphs, JHEP 11 (2017) 198 [arXiv:1709.07435] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    S. Di Vita, S. Laporta, P. Mastrolia, A. Primo and U. Schubert, Master integrals for the NNLO virtual corrections to μe scattering in QED: the non-planar graphs, JHEP 09 (2018) 016 [arXiv:1806.08241] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  32. [32]
    C. Carloni Calame et al., NNLO leptonic and hadronic corrections to Bhabha scattering and luminosity monitoring at meson factories, JHEP 07 (2011) 126 [arXiv:1106.3178] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    S. Actis, M. Czakon, J. Gluza and T. Riemann, Virtual hadronic and leptonic contributions to Bhabha scattering, Phys. Rev. Lett. 100 (2008) 131602 [arXiv:0711.3847] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J.H. Kuhn and S. Uccirati, Two-loop QED hadronic corrections to Bhabha scattering, Nucl. Phys. B 806 (2009) 300 [arXiv:0807.1284] [INSPIRE].
  35. [35]
    M. Fael and M. Passera, Muon-electron scattering at NNLO: the hadronic corrections, arXiv:1901.03106 [INSPIRE].
  36. [36]
    M.J. Levine and R. Roskies, New technique for vertex graphs, Phys. Rev. Lett. 30 (1973) 772 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M.J. Levine and R. Roskies, Hyperspherical approach to quantum electrodynamics — sixth-order magnetic moment, Phys. Rev. D 9 (1974) 421 [INSPIRE].
  38. [38]
    M.J. Levine, E. Remiddi and R. Roskies, Analytic contributions to the g factor of the electron in sixth order, Phys. Rev. D 20 (1979) 2068 [INSPIRE].
  39. [39]
    R.Z. Roskies, M.J. Levine and E. Remiddi, Analytic evaluation of sixth order contributions to the electron’s g factor, Adv. Ser. Direct. High Energy Phys. 7 (1990) 162 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Laporta and E. Remiddi, The analytic value of the light-light vertex graph contributions to the electron (g − 2) in QED, Phys. Lett. B 265 (1991) 182 [INSPIRE].
  41. [41]
    S. Laporta and E. Remiddi, The analytical value of the electron light-light graphs contribution to the muon (g − 2) in QED, Phys. Lett. B 301 (1993) 440 [INSPIRE].
  42. [42]
    M. Knecht and A. Nyffeler, Hadronic light by light corrections to the muon g − 2: the pion pole contribution, Phys. Rev. D 65 (2002) 073034 [hep-ph/0111058] [INSPIRE].
  43. [43]
    F. Jegerlehner and A. Nyffeler, The muon g − 2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].
  44. [44]
    G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersive approach to hadronic light-by-light scattering, JHEP 09 (2014) 091 [arXiv:1402.7081] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    G. Colangelo, M. Hoferichter, B. Kubis, M. Procura and P. Stoffer, Towards a data-driven analysis of hadronic light-by-light scattering, Phys. Lett. B 738 (2014) 6 [arXiv:1408.2517] [INSPIRE].
  46. [46]
    P.A. Baikov, A. Maier and P. Marquard, The QED vacuum polarization function at four loops and the anomalous magnetic moment at five loops, Nucl. Phys. B 877 (2013) 647 [arXiv:1307.6105] [INSPIRE].
  47. [47]
    S. Laporta, Hyperspherical integration and the triple cross vertex graphs, Nuovo Cim. A 107 (1994) 1729 [hep-ph/9404203] [INSPIRE].
  48. [48]
    P. Mastrolia, T. Peraro and A. Primo, Adaptive integrand decomposition in parallel and orthogonal space, JHEP 08 (2016) 164 [arXiv:1605.03157] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    R. Barbieri, J.A. Mignaco and E. Remiddi, Electron form-factors up to fourth order. 1, Nuovo Cim. A 11 (1972) 824 [INSPIRE].
  50. [50]
    T. Blum, Lattice calculation of the lowest order hadronic contribution to the muon anomalous magnetic moment, Phys. Rev. Lett. 91 (2003) 052001 [hep-lat/0212018] [INSPIRE].
  51. [51]
    F. Jegerlehner, The effective fine structure constant at TESLA energies, hep-ph/0105283 [INSPIRE].
  52. [52]
    F. Jegerlehner, Precision measurements of sigma(hadronic) for α eff (E) at ILC energies and (g − 2)μ, Nucl. Phys. Proc. Suppl. 162 (2006) 22 [hep-ph/0608329] [INSPIRE].
  53. [53]
    F. Jegerlehner, Electroweak effective couplings for future precision experiments, Nuovo Cim. C 034S1 (2011) 31 [arXiv:1107.4683] [INSPIRE].
  54. [54]
    R.V. Harlander and M. Steinhauser, rhad: a program for the evaluation of the hadronic R ratio in the perturbative regime of QCD, Comput. Phys. Commun. 153 (2003) 244 [hep-ph/0212294] [INSPIRE].
  55. [55]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
  56. [56]
    J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].
  57. [57]
    B. Chokoufe Nejad, T. Hahn, J.N. Lang and E. Mirabella, FormCalc 8: better algebra and vectorization, J. Phys. Conf. Ser. 523 (2014) 012050 [arXiv:1310.0274] [INSPIRE].
  58. [58]
    A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220 [arXiv:1604.06792] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    H.H. Patel, Package-X: a Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 197 (2015) 276 [arXiv:1503.01469] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    R. Bonciani, P. Mastrolia and E. Remiddi, QED vertex form-factors at two loops, Nucl. Phys. B 676 (2004) 399 [hep-ph/0307295] [INSPIRE].
  61. [61]
    D. Maître, HPL, a Mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].
  62. [62]
    D. Maître, Extension of HPL to complex arguments, Comput. Phys. Commun. 183 (2012) 846 [hep-ph/0703052] [INSPIRE].
  63. [63]
    F. Jegerlehner, private communications.Google Scholar
  64. [64]
    D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009) 1709 [arXiv:0811.4113] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Theoretische Physik IUniversität SiegenSiegenGermany

Personalised recommendations