Advertisement

Journal of High Energy Physics

, 2019:21 | Cite as

BSM hadronic matrix elements for ε/ε and Kππ decays in the Dual QCD approach

  • Jason Aebischer
  • Andrzej J. BurasEmail author
  • Jean-Marc Gérard
Open Access
Regular Article - Theoretical Physics
  • 8 Downloads

Abstract

We calculate for the first time all four-quark hadronic matrix elements of local operators possibly contributing to Kππ decays and in particular to the ratio ε beyond the Standard Model (BSM). To this end we use the Dual QCD (DQCD) approach. In addition to 7 new mirror operators obtained from the SM ones by flipping the chirality, we count 13 BSM four-quark operators of a given chirality linearly independent of each other and of the aforesaid 14 operators for which hadronic matrix elements are already known. We present results in two bases for all these operators, one termed DQCD basis useful for the calculation of the hadronic matrix elements in the DQCD approach and the other called SD basis suited to the short distance renormalization group evolution above the 1 GeV scale. We demonstrate that the pattern of long distance evolution (meson evolution) matches the one of short distance evolution (quark-gluon evolution), a property which to our knowledge cannot be presently achieved in any other analytical framework. The highlights of our paper are chirally enhanced matrix elements of tensor-tensor and scalar-scalar BSM operators. They could thereby explain the emerging ε anomaly which is strongly indicated within DQCD with some support from lattice QCD. On the other hand we do not expect the BSM operators to be relevant for the ΔI = 1/2 rule.

Keywords

Beyond Standard Model CP violation Kaon Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.J. Buras and J. Girrbach, Towards the Identification of New Physics through Quark Flavour Violating Processes, Rept. Prog. Phys. 77 (2014) 086201 [arXiv:1306.3775] [INSPIRE].
  2. [2]
    A.J. Buras, The Return of Kaon Flavour Physics, Acta Phys. Polon. B 49 (2018) 1043 [arXiv:1805.11096] [INSPIRE].
  3. [3]
    A.J. Buras and J.-M. Gérard, Upper Bounds on ε /ε Parameters B 6(1/2) and B 8(3/2) from Large N QCD and other News, JHEP 12 (2015) 008 [arXiv:1507.06326] [INSPIRE].
  4. [4]
    A.J. Buras and J.-M. Gérard, Final state interactions in Kππ decays: ΔI = 1/2 rule vs. ε , Eur. Phys. J. C 77 (2017) 10 [arXiv:1603.05686] [INSPIRE].
  5. [5]
    RBC and UKQCD collaborations, Standard Model Prediction for Direct CP Violation in Kππ Decay, Phys. Rev. Lett. 115 (2015) 212001 [arXiv:1505.07863] [INSPIRE].
  6. [6]
    T. Blum et al., Kππ ΔI = 3/2 decay amplitude in the continuum limit, Phys. Rev. D 91 (2015) 074502 [arXiv:1502.00263] [INSPIRE].
  7. [7]
    A.J. Buras, M. Gorbahn, S. Jäger and M. Jamin, Improved anatomy of ε /ε in the Standard Model, JHEP 11 (2015) 202 [arXiv:1507.06345] [INSPIRE].
  8. [8]
    T. Kitahara, U. Nierste and P. Tremper, Singularity-free next-to-leading order ΔS = 1 renormalization group evolution and ϵ K/ϵ K in the Standard Model and beyond, JHEP 12 (2016) 078 [arXiv:1607.06727] [INSPIRE].
  9. [9]
    M. Cerdà-Sevilla, M. Gorbahn, S. Jäger and A. Kokulu, Towards NNLO accuracy for ε , J. Phys. Conf. Ser. 800 (2017) 012008 [arXiv:1611.08276] [INSPIRE].
  10. [10]
    A.J. Buras, F. De Fazio and J. Girrbach, ΔI = 1/2 rule, ε /ε and \( K\to \pi \nu \overline{\nu} \) in Z (Z) and G models with FCNC quark couplings, Eur. Phys. J. C 74 (2014) 2950 [arXiv:1404.3824] [INSPIRE].
  11. [11]
    A.J. Buras, D. Buttazzo and R. Knegjens, \( K\to \pi \nu \overline{\nu} \) and ϵ /ϵ in Simplified New Physics Models, JHEP 11 (2015) 166 [arXiv:1507.08672] [INSPIRE].
  12. [12]
    M. Blanke, A.J. Buras and S. Recksiegel, Quark flavour observables in the Littlest Higgs model with T-parity after LHC Run 1, Eur. Phys. J. C 76 (2016) 182 [arXiv:1507.06316] [INSPIRE].
  13. [13]
    A.J. Buras and F. De Fazio, ε /ε in 331 Models, JHEP 03 (2016) 010 [arXiv:1512.02869] [INSPIRE].
  14. [14]
    A.J. Buras and F. De Fazio, 331 Models Facing the Tensions in ΔF = 2 Processes with the Impact on ε /ε, B sμ + μ and BK μ + μ , JHEP 08 (2016) 115 [arXiv:1604.02344] [INSPIRE].
  15. [15]
    A.J. Buras, New physics patterns in ε /ε and ε K with implications for rare kaon decays and ΔM K, JHEP 04 (2016) 071 [arXiv:1601.00005] [INSPIRE].
  16. [16]
    T. Kitahara, U. Nierste and P. Tremper, Supersymmetric Explanation of CP Violation in Kππ Decays, Phys. Rev. Lett. 117 (2016) 091802 [arXiv:1604.07400] [INSPIRE].
  17. [17]
    M. Endo, S. Mishima, D. Ueda and K. Yamamoto, Chargino contributions in light of recent ϵ, Phys. Lett. B 762 (2016) 493 [arXiv:1608.01444] [INSPIRE].
  18. [18]
    M. Endo, T. Kitahara, S. Mishima and K. Yamamoto, Revisiting Kaon Physics in General Z Scenario, Phys. Lett. B 771 (2017) 37 [arXiv:1612.08839] [INSPIRE].
  19. [19]
    V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, An ε improvement from right-handed currents, Phys. Lett. B 767 (2017) 1 [arXiv:1612.03914] [INSPIRE].
  20. [20]
    S. Alioli, V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Right-handed charged currents in the era of the Large Hadron Collider, JHEP 05 (2017) 086 [arXiv:1703.04751] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C. Bobeth, A.J. Buras, A. Celis and M. Jung, Patterns of Flavour Violation in Models with Vector-Like Quarks, JHEP 04 (2017) 079 [arXiv:1609.04783] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C. Bobeth, A.J. Buras, A. Celis and M. Jung, Yukawa enhancement of Z-mediated new physics in ΔS = 2 and ΔB = 2 processes, JHEP 07 (2017) 124 [arXiv:1703.04753] [INSPIRE].
  23. [23]
    A. Crivellin, G. D’Ambrosio, T. Kitahara and U. Nierste, \( K\to \pi \nu \overline{\nu} \) in the MSSM in light of the ε K/ε K anomaly, Phys. Rev. D 96 (2017) 015023 [arXiv:1703.05786] [INSPIRE].
  24. [24]
    C. Bobeth and A.J. Buras, Leptoquarks meet ε /ε and rare Kaon processes, JHEP 02 (2018) 101 [arXiv:1712.01295] [INSPIRE].
  25. [25]
    M. Endo, T. Goto, T. Kitahara, S. Mishima, D. Ueda and K. Yamamoto, Gluino-mediated electroweak penguin with flavor-violating trilinear couplings, JHEP 04 (2018) 019 [arXiv:1712.04959] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    N. Haba, H. Umeeda and T. Yamada, ϵ /ϵ Anomaly and Neutron EDM in SU(2)L × SU(2)R × U(1)BL model with Charge Symmetry, JHEP 05 (2018) 052 [arXiv:1802.09903] [INSPIRE].
  27. [27]
    C.-H. Chen and T. Nomura, Re(ϵ K'/ϵ K) and \( K\to \pi \nu \overline{\nu} \) in a two-Higgs doublet model, JHEP 08 (2018) 145 [arXiv:1804.06017] [INSPIRE].
  28. [28]
    C.-H. Chen and T. Nomura, ϵ /ϵ from charged-Higgs-induced gluonic dipole operators, Phys. Lett. B 787 (2018) 182 [arXiv:1805.07522] [INSPIRE].
  29. [29]
    S. Matsuzaki, K. Nishiwaki and K. Yamamoto, Simultaneous interpretation of K and B anomalies in terms of chiral-flavorful vectors, JHEP 11 (2018) 164 [arXiv:1806.02312] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    N. Haba, H. Umeeda and T. Yamada, Direct CP Violation in Cabibbo-Favored Charmed Meson Decays and ϵ /ϵ in SU(2)L × SU(2)R × U(1)BL Model, JHEP 10 (2018) 006 [arXiv:1806.03424] [INSPIRE].
  31. [31]
    M. Ciuchini, E. Franco, V. Lubicz, G. Martinelli, I. Scimemi and L. Silvestrini, Next-to-leading order QCD corrections to ΔF = 2 effective Hamiltonians, Nucl. Phys. B 523 (1998) 501 [hep-ph/9711402] [INSPIRE].
  32. [32]
    A.J. Buras, M. Misiak and J. Urban, Two loop QCD anomalous dimensions of flavor changing four quark operators within and beyond the standard model, Nucl. Phys. B 586 (2000) 397 [hep-ph/0005183] [INSPIRE].
  33. [33]
    W.A. Bardeen, A.J. Buras and J.M. Gérard, The ΔI = 1/2 Rule in the Large N Limit, Phys. Lett. B 180 (1986) 133 [INSPIRE].
  34. [34]
    W.A. Bardeen, A.J. Buras and J.M. Gérard, The Kππ Decays in the Large N Limit: Quark Evolution, Nucl. Phys. B 293 (1987) 787 [INSPIRE].
  35. [35]
    W.A. Bardeen, A.J. Buras and J.M. Gérard, A Consistent Analysis of the ΔI = 1/2 Rule for K Decays, Phys. Lett. B 192 (1987) 138 [INSPIRE].
  36. [36]
    W.A. Bardeen, A.J. Buras and J.M. Gérard, The B Parameter Beyond the Leading Order of 1/N Expansion, Phys. Lett. B 211 (1988) 343 [INSPIRE].
  37. [37]
    A.J. Buras, J.-M. Gérard and W.A. Bardeen, Large N Approach to Kaon Decays and Mixing 28 Years Later: ΔI = 1/2 Rule, \( {\widehat{B}}_K \) and ΔM K , Eur. Phys. J. C 74 (2014) 2871 [arXiv:1401.1385] [INSPIRE].
  38. [38]
    A.J. Buras, ΔI = 1/2 Rule and \( {\widehat{B}}_K \) : 2014, in Proceedings, 7th International Workshop on Quantum Chromodynamics Theory and Experiment (QCD@Work 2014): Giovinazzo, Bari, Italy, June 16-19, 2014, arXiv:1408.4820 [INSPIRE].
  39. [39]
    A.J. Buras and J.-M. Gérard, Dual QCD Insight into BSM Hadronic Matrix Elements for \( {K}^0-{\overline{K}}^0 \) Mixing from Lattice QCD,arXiv:1804.02401[INSPIRE].
  40. [40]
    A.J. Buras and J.-M. Gérard, Kππ and Kπ Matrix Elements of the Chromomagnetic Operators from Dual QCD, JHEP 07 (2018) 126 [arXiv:1803.08052] [INSPIRE].
  41. [41]
    ETM collaboration, Kπ matrix elements of the chromomagnetic operator on the lattice, Phys. Rev. D 97 (2018) 074501 [arXiv:1712.09824] [INSPIRE].
  42. [42]
    ETM collaboration, ΔS = 2 and ΔC = 2 bag parameters in the standard model and beyond from N f = 2 + 1 + 1 twisted-mass lattice QCD, Phys. Rev. D 92 (2015) 034516 [arXiv:1505.06639] [INSPIRE].
  43. [43]
    SWME collaboration, Kaon BSM B-parameters using improved staggered fermions from N f = 2 + 1 unquenched QCD, Phys. Rev. D 93 (2016) 014511 [arXiv:1509.00592] [INSPIRE].
  44. [44]
    RBC/UKQCD collaboration, Neutral Kaon Mixing Beyond the Standard Model with n f = 2 + 1 Chiral Fermions Part 1: Bare Matrix Elements and Physical Results, JHEP 11 (2016) 001 [arXiv:1609.03334] [INSPIRE].
  45. [45]
    RBC and UKQCD collaborations, Neutral kaon mixing beyond the Standard Model with n f = 2 + 1 chiral fermions. Part 2: non perturbative renormalisation of the ΔF = 2 four-quark operators, JHEP 10 (2017) 054 [arXiv:1708.03552] [INSPIRE].
  46. [46]
    P. Boyle, N. Garron, J. Kettle, A. Khamseh and J.T. Tsang, BSM Kaon Mixing at the Physical Point, EPJ Web Conf. 175 (2018) 13010 [arXiv:1710.09176] [INSPIRE].
  47. [47]
    J. Aebischer, C. Bobeth, A.J. Buras, J.-M. Gérard and D.M. Straub, Master formula for ε /ε beyond the Standard Model, arXiv:1807.02520 [INSPIRE].
  48. [48]
    J. Aebischer, C. Bobeth, A.J. Buras and D.M. Straub, Anatomy of ε /ε beyond the Standard Model, arXiv:1808.00466 [INSPIRE].
  49. [49]
    C.C. Nishi, Simple derivation of general Fierz-like identities, Am. J. Phys. 73 (2005) 1160 [hep-ph/0412245] [INSPIRE].
  50. [50]
    J.M. Gérard, W. Grimus, A. Raychaudhuri and G. Zoupanos, Super Kobayashi-Maskawa CP Violation, Phys. Lett. 140B (1984) 349 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].
  52. [52]
    C.W. Bernard, T. Draper, A. Soni, H.D. Politzer and M.B. Wise, Application of Chiral Perturbation Theory to K → 2π Decays, Phys. Rev. D 32 (1985) 2343 [INSPIRE].
  53. [53]
    R.S. Chivukula, J.M. Flynn and H. Georgi, Polychromatic Penguins Don’t Fly, Phys. Lett. B 171 (1986) 453 [INSPIRE].
  54. [54]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].
  56. [56]
    P. Mertens and C. Smith, The sdγ decay in and beyond the Standard Model, JHEP 08 (2011) 069 [arXiv:1103.5992] [INSPIRE].
  57. [57]
    J.P. Fatelo and J.M. Gérard, Current current operator evolution in the chiral limit, Phys. Lett. B 347 (1995) 136 [INSPIRE].
  58. [58]
    J. Aebischer, M. Fael, C. Greub and J. Virto, B physics Beyond the Standard Model at One Loop: Complete Renormalization Group Evolution below the Electroweak Scale, JHEP 09 (2017) 158 [arXiv:1704.06639] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    M. González-Alonso, J. Martin Camalich and K. Mimouni, Renormalization-group evolution of new physics contributions to (semi)leptonic meson decays, Phys. Lett. B 772 (2017) 777 [arXiv:1706.00410] [INSPIRE].
  60. [60]
    F. Feruglio, P. Paradisi and O. Sumensari, Implications of scalar and tensor explanations of \( {R}_{D^{\left(\ast \right)}} \), JHEP 11 (2018) 191 [arXiv:1806.10155] [INSPIRE].
  61. [61]
    D. Bečirević, I. Doršner, S. Fajfer, N. Košnik, D.A. Faroughy and O. Sumensari, Scalar leptoquarks from grand unified theories to accommodate the B-physics anomalies, Phys. Rev. D 98 (2018) 055003 [arXiv:1806.05689] [INSPIRE].
  62. [62]
    D.J. Broadhurst and A.G. Grozin, Matching QCD and HQET heavy-light currents at two loops and beyond, Phys. Rev. D 52 (1995) 4082 [hep-ph/9410240] [INSPIRE].
  63. [63]
    C. Bobeth, G. Hiller and G. Piranishvili, Angular distributions of \( \overline{B}\to K{\ell}^{+}{\ell}^{-} \) decays, JHEP 12 (2007) 040 [arXiv:0709.4174] [INSPIRE].
  64. [64]
    J. Aebischer, A. Crivellin, M. Fael and C. Greub, Matching of gauge invariant dimension-six operators for bs and bc transitions, JHEP 05 (2016) 037 [arXiv:1512.02830] [INSPIRE].
  65. [65]
    E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-Energy Effective Field Theory below the Electroweak Scale: Operators and Matching, JHEP 03 (2018) 016 [arXiv:1709.04486] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  66. [66]
    A.J. Buras and J.M. Gérard, 1/N Expansion for Kaons, Nucl. Phys. B 264 (1986) 371 [INSPIRE].
  67. [67]
    A.J. Buras and J.M. Gérard, Isospin Breaking Contributions to ε , Phys. Lett. B 192 (1987) 156 [INSPIRE].
  68. [68]
    J. Aebischer et al., WCxf: an exchange format for Wilson coefficients beyond the Standard Model, Comput. Phys. Commun. 232 (2018) 71 [arXiv:1712.05298] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    J. Aebischer, J. Kumar and D.M. Straub, Wilson: a Python package for the running and matching of Wilson coefficients above and below the electroweak scale, Eur. Phys. J. C 78 (2018) 1026 [arXiv:1804.05033] [INSPIRE].
  70. [70]
    D.M. Straub, flavio: a Python package for flavour and precision phenomenology in the Standard Model and beyond, arXiv:1810.08132 [INSPIRE].
  71. [71]
    J. Aebischer, J. Kumar, P. Stangl and D.M. Straub, A Global Likelihood for Precision Constraints and Flavour Anomalies, arXiv:1810.07698 [INSPIRE].
  72. [72]
    D.M. Straub, Basis flavio (EFT WET-3) web site, https://wcxf.github.io/assets/pdf/WET-3.flavio.pdf, accessed 12 December (2018).

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Jason Aebischer
    • 1
  • Andrzej J. Buras
    • 2
    • 3
    Email author
  • Jean-Marc Gérard
    • 4
  1. 1.Excellence Cluster Universe, TUMGarchingGermany
  2. 2.TUM Institute for Advanced StudyGarchingGermany
  3. 3.Physik Department, TU MünchenGarchingGermany
  4. 4.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations