Journal of High Energy Physics

, 2019:17 | Cite as

Electroweak multiplet dark matter at future lepton colliders

  • Kenji Kadota
  • Andrew SprayEmail author
Open Access
Regular Article - Theoretical Physics


An electroweak multiplet stable due to a new global symmetry is a simple and well-motivated candidate for thermal dark matter. We study how direct searches at a future linear collider, such as the proposed CLIC, can constrain scalar and fermion triplets, quintets and septets, as well as a fermion doublet. The phenomenology is highly sensitive to charged state lifetimes and thus the mass splitting between the members of the multiplet. We include both radiative corrections and the effect of non-renormalisable operators on this splitting. In order to explore the full range of charged state lifetimes, we consider signals including long-lived charged particles, disappearing tracks, and monophotons. By combining the different searches we find discovery and exclusion contours in the mass-lifetime plane. In particular, when the mass splitting is generated purely through radiative corrections, we can exclude the pure-Higgsino doublet below 310 GeV, the pure-wino triplet below 775 GeV, and the minimal dark matter fermion quintet below 1025 GeV. The scenario where the thermal relic abundance of a Higgsino accounts for the whole dark matter of the Universe can be excluded if the mass splitting between the charged and neutral states is less than 230 MeV. Finally, we discuss possible improvements to these limits by using associated hard leptons to idenify the soft visible decay products of the charged members of the dark matter multiplet.


Beyond Standard Model Supersymmetric Effective Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M. Cirelli, T. Hambye, P. Panci, F. Sala and M. Taoso, Gamma ray tests of minimal dark matter, JCAP 10 (2015) 026 [arXiv:1507.05519] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    C. Garcia-Cely, A. Ibarra, A.S. Lamperstorfer and M.H.G. Tytgat, Gamma-rays from heavy minimal dark matter, JCAP 10 (2015) 058 [arXiv:1507.05536] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    T. Behnke et al., The International Linear Collider technical design report — volume 1: executive summary, arXiv:1306.6327 [INSPIRE].
  4. [4]
    M. Koratzinos et al., TLEP: a high-performance circular e + e collider to study the Higgs boson, in Proceedings, 4th International Particle Accelerator Conference (IPAC 2013), Shanghai, China, 12–17 May 2013, pg. TUPME040 [arXiv:1305.6498] [INSPIRE].
  5. [5]
    L. Linssen, A. Miyamoto, M. Stanitzki and H. Weerts, Physics and detectors at CLIC: CLIC conceptual design report, arXiv:1202.5940 [INSPIRE].
  6. [6]
    D.M. Kaplan, Muon cooling and future muon facilities: the coming decade, in Particles and fields. Proceedings, Meeting of the Division of the American Physical Society, DPF 2009, Detroit, MI, U.S.A. 26–31 July 2009 [arXiv:0910.3154] [INSPIRE].
  7. [7]
    V.D. Shiltsev, High energy particle colliders: past 20 years, next 20 years and beyond, Phys. Usp. 55 (2012) 965 [arXiv:1205.3087] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Bonesini, Perspectives for muon colliders and neutrino factories, Frascati Phys. Ser. 61 (2016) 11 [arXiv:1606.00765] [INSPIRE].Google Scholar
  9. [9]
    T. Li and M.A. Schmidt, Sensitivity of future lepton colliders to the search for charged lepton flavor violation, arXiv:1809.07924 [INSPIRE].
  10. [10]
    M. Köksal, A.A. Billur, A. Gutiérrez-Rodríguez and M.A. Hernández-Ruíz, The μ+μcollider to sensitivity estimates on the magnetic and electric dipole moments of the tau-lepton, arXiv:1811.01188 [INSPIRE].
  11. [11]
    J.-P. Delahaye et al., A staged muon accelerator facility for neutrino and collider physics, in Proceedings, 5th International Particle Accelerator Conference (IPAC 2014), Dresden, Germany, 15–20 June 2014, pg. WEZA02 [arXiv:1502.01647] [INSPIRE].
  12. [12]
    J.-P. Delahaye et al., Muon colliders, arXiv:1901.06150 [INSPIRE].
  13. [13]
    L. Di Luzio, R. Gröber and G. Panico, Probing new electroweak states via precision measurements at the LHC and future colliders, JHEP 01 (2019) 011 [arXiv:1810.10993] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    K. Harigaya, K. Ichikawa, A. Kundu, S. Matsumoto and S. Shirai, Indirect probe of electroweak-interacting particles at future lepton colliders, JHEP 09 (2015) 105 [arXiv:1504.03402] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Q.-H. Cao, Y. Li, B. Yan, Y. Zhang and Z. Zhang, Probing dark particles indirectly at the CEPC, Nucl. Phys. B 909 (2016) 197 [arXiv:1604.07536] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    U. Chattopadhyay, D. Das, P. Konar and D.P. Roy, Looking for a heavy wino LSP in collider and dark matter experiments, Phys. Rev. D 75 (2007) 073014 [hep-ph/0610077] [INSPIRE].
  17. [17]
    M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. Mahbubani, P. Schwaller and J. Zurita, Closing the window for compressed dark sectors with disappearing charged tracks, JHEP 06 (2017) 119 [Erratum ibid. 10 (2017) 061] [arXiv:1703.05327] [INSPIRE].
  19. [19]
    T. Han, S. Mukhopadhyay and X. Wang, Electroweak dark matter at future hadron colliders, Phys. Rev. D 98 (2018) 035026 [arXiv:1805.00015] [INSPIRE].ADSGoogle Scholar
  20. [20]
    C. Cai, Z.-H. Yu and H.-H. Zhang, CEPC precision of electroweak oblique parameters and weakly interacting dark matter: the fermionic case, Nucl. Phys. B 921 (2017) 181 [arXiv:1611.02186] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    C. Cai, Z.-H. Yu and H.-H. Zhang, CEPC precision of electroweak oblique parameters and weakly interacting dark matter: the scalar case, Nucl. Phys. B 924 (2017) 128 [arXiv:1705.07921] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    Q.-F. Xiang, X.-J. Bi, P.-F. Yin and Z.-H. Yu, Exploring fermionic dark matter via Higgs boson precision measurements at the circular electron positron collider, Phys. Rev. D 97 (2018) 055004 [arXiv:1707.03094] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J.-W. Wang, X.-J. Bi, Q.-F. Xiang, P.-F. Yin and Z.-H. Yu, Exploring triplet-quadruplet fermionic dark matter at the LHC and future colliders, Phys. Rev. D 97 (2018) 035021 [arXiv:1711.05622] [INSPIRE].ADSGoogle Scholar
  24. [24]
    R. Essig, Direct detection of non-chiral dark matter, Phys. Rev. D 78 (2008) 015004 [arXiv:0710.1668] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J. Ellis, A. Fowlie, L. Marzola and M. Raidal, Statistical analyses of Higgs- and Z-portal dark matter models, Phys. Rev. D 97 (2018) 115014 [arXiv:1711.09912] [INSPIRE].ADSGoogle Scholar
  26. [26]
    D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [INSPIRE].
  27. [27]
    J. Bramante, P.J. Fox, G.D. Kribs and A. Martin, Inelastic frontier: discovering dark matter at high recoil energy, Phys. Rev. D 94 (2016) 115026 [arXiv:1608.02662] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  29. [29]
    M. Ibe, S. Matsumoto and R. Sato, Mass splitting between charged and neutral winos at two-loop level, Phys. Lett. B 721 (2013) 252 [arXiv:1212.5989] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.A. Casas, D.G. Cerdeño, J.M. Moreno and J. Quilis, Reopening the Higgs portal for single scalar dark matter, JHEP 05 (2017) 036 [arXiv:1701.08134] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    D. Grellscheid and P. Richardson, Simulation of tau decays in the HERWIG++ event generator, arXiv:0710.1951 [INSPIRE].
  32. [32]
    C.H. Chen, M. Drees and J.F. Gunion, A nonstandard string/SUSY scenario and its phenomenological implications, Phys. Rev. D 55 (1997) 330 [Erratum ibid. D 60 (1999) 039901] [hep-ph/9512230] [hep-ph/9607421] [INSPIRE].
  33. [33]
    J.H. Kuhn and A. Santamaria, Tau decays to pions, Z. Phys. C 48 (1990) 445 [INSPIRE].Google Scholar
  34. [34]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].
  35. [35]
    B. von Harling and K. Petraki, Bound-state formation for thermal relic dark matter and unitarity, JCAP 12 (2014) 033 [arXiv:1407.7874] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    ATLAS collaboration, Search for long-lived charginos based on a disappearing-track signature in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 06 (2018) 022 [arXiv:1712.02118] [INSPIRE].
  37. [37]
    T. Barklow et al., ILC operating scenarios, arXiv:1506.07830 [INSPIRE].
  38. [38]
    W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, Eur. Phys. J. C 71 (2011) 1742 [arXiv:0708.4233] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Moretti, T. Ohl and J. Reuter, O’Mega: an optimizing matrix element generator, hep-ph/0102195 [INSPIRE].
  40. [40]
    N.D. Christensen, C. Duhr, B. Fuks, J. Reuter and C. Speckner, Introducing an interface between WHIZARD and FeynRules, Eur. Phys. J. C 72 (2012) 1990 [arXiv:1010.3251] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    C. Rimbault et al., GUINEA PIG++: an upgraded version of the linear collider beam beam interaction simulation code GUINEA PIG, Conf. Proc. C 070625 (2007) 2728 [INSPIRE].Google Scholar
  42. [42]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  43. [43]
    N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    ATLAS collaboration, Searches for heavy long-lived charged particles with the ATLAS detector in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2015) 068 [arXiv:1411.6795] [INSPIRE].
  45. [45]
    ATLAS collaboration, Search for heavy charged long-lived particles in proton-proton collisions at \( \sqrt{s}=13 \) TeV using an ionisation measurement with the ATLAS detector, Phys. Lett. B 788 (2019) 96 [arXiv:1808.04095] [INSPIRE].
  46. [46]
    CMS collaboration, Searches for long-lived charged particles in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 07 (2013) 122 [arXiv:1305.0491] [INSPIRE].
  47. [47]
    CMS collaboration, Search for long-lived charged particles in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. D 94 (2016) 112004 [arXiv:1609.08382] [INSPIRE].
  48. [48]
    ATLAS collaboration, Search for long-lived charginos based on a disappearing-track signature in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2017-017, CERN, Geneva, Switzerland (2017).
  49. [49]
    M. Berggren et al., Tackling light higgsinos at the ILC, Eur. Phys. J. C 73 (2013) 2660 [arXiv:1307.3566] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS)DaejeonKorea

Personalised recommendations