Advertisement

Journal of High Energy Physics

, 2019:16 | Cite as

Coloured coannihilations: dark matter phenomenology meets non-relativistic EFTs

  • S. BiondiniEmail author
  • S. Vogl
Open Access
Regular Article - Theoretical Physics
  • 9 Downloads

Abstract

We investigate the phenomenology of a simplified model with a Majorana fermion as dark matter candidate which interacts with Standard Model quarks via a colourcharged coannihilation partner. Recently it has been realized that non-perturbative dynamics, including the Sommerfeld effect, bound state formation/dissociation and thermal corrections, play an important role in coannihilations with coloured mediators. This calls for a careful analysis of thermal freeze-out and a new look at the experimental signatures expected for a thermal relic. We employ a state of the art calculation of the relic density which makes use of a non-relativistic effective theory framework and calculate the effective annihilation rates by solving a plasma-modified Schrödinger equation. We determine the cosmologically preferred parameter space and confront it with current experimental limits and future prospects for dark matter detection.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM Effective Field Theories Thermal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  2. [2]
    M. Duerr et al., How to save the WIMP: global analysis of a dark matter model with two s-channel mediators, JHEP 09 (2016) 042 [arXiv:1606.07609] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Escudero, A. Berlin, D. Hooper and M.-X. Lin, Toward (finally!) ruling out Z and Higgs mediated dark matter models, JCAP 12 (2016) 029 [arXiv:1609.09079] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    GAMBIT collaboration, Status of the scalar singlet dark matter model, Eur. Phys. J. C 77 (2017) 568 [arXiv:1705.07931] [INSPIRE].
  5. [5]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].
  6. [6]
    J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [INSPIRE].
  7. [7]
    A. De Simone, G.F. Giudice and A. Strumia, Benchmarks for dark matter searches at the LHC, JHEP 06 (2014) 081 [arXiv:1402.6287] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    J. Ellis, K.A. Olive and J. Zheng, The extent of the stop coannihilation strip, Eur. Phys. J. C 74 (2014) 2947 [arXiv:1404.5571] [INSPIRE].
  9. [9]
    A. Ibarra, A. Pierce, N.R. Shah and S. Vogl, Anatomy of coannihilation with a scalar top partner, Phys. Rev. D 91 (2015) 095018 [arXiv:1501.03164] [INSPIRE].
  10. [10]
    A. Pierce, N.R. Shah and S. Vogl, Stop co-annihilation in the minimal supersymmetric standard model revisited, Phys. Rev. D 97 (2018) 023008 [arXiv:1706.01911] [INSPIRE].
  11. [11]
    M.J. Baker et al., The coannihilation codex, JHEP 12 (2015) 120 [arXiv:1510.03434] [INSPIRE].ADSGoogle Scholar
  12. [12]
    S. El Hedri, A. Kaminska, M. de Vries and J. Zurita, Simplified phenomenology for colored dark sectors, JHEP 04 (2017) 118 [arXiv:1703.00452] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Davoli, A. De Simone, T. Jacques and A. Morandini, LHC phenomenology of dark matter with a color-octet partner, JHEP 07 (2018) 054 [arXiv:1803.02861] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Garny, J. Heisig, M. Hufnagel and B. Lülf, Top-philic dark matter within and beyond the WIMP paradigm, Phys. Rev. D 97 (2018) 075002 [arXiv:1802.00814] [INSPIRE].
  15. [15]
    B. von Harling and K. Petraki, Bound-state formation for thermal relic dark matter and unitarity, JCAP 12 (2014) 033 [arXiv:1407.7874] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    J. Harz et al., SUSY-QCD corrections to stop annihilation into electroweak final states including Coulomb enhancement effects, Phys. Rev. D 91 (2015) 034012 [arXiv:1410.8063] [INSPIRE].
  17. [17]
    S.P. Liew and F. Luo, Effects of QCD bound states on dark matter relic abundance, JHEP 02 (2017) 091 [arXiv:1611.08133] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    S. Kim and M. Laine, On thermal corrections to near-threshold annihilation, JCAP 01 (2017) 013 [arXiv:1609.00474] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Kim and M. Laine, Rapid thermal co-annihilation through bound states in QCD, JHEP 07 (2016) 143 [arXiv:1602.08105] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Cosmological implications of dark matter bound states, JCAP 05 (2017) 006 [arXiv:1702.01141] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    S. Biondini and M. Laine, Thermal dark matter co-annihilating with a strongly interacting scalar, JHEP 04 (2018) 072 [arXiv:1801.05821] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    J. Harz and K. Petraki, Radiative bound-state formation in unbroken perturbative non-Abelian theories and implications for dark matter, JHEP 07 (2018) 096 [arXiv:1805.01200] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    M. Garny, A. Ibarra and S. Vogl, Signatures of Majorana dark matter with t-channel mediators, Int. J. Mod. Phys. D 24 (2015) 1530019 [arXiv:1503.01500] [INSPIRE].
  24. [24]
    Planck collaboration, Planck 2018 results. I. Overview and the cosmological legacy of Planck, arXiv:1807.06205 [INSPIRE].
  25. [25]
    M. Garny, J. Heisig, B. Lülf and S. Vogl, Coannihilation without chemical equilibrium, Phys. Rev. D 96 (2017) 103521 [arXiv:1705.09292] [INSPIRE].
  26. [26]
    B.W. Lee and S. Weinberg, Cosmological lower bound on heavy neutrino masses, Phys. Rev. Lett. 39 (1977) 165 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].
  28. [28]
    W.-Y. Keung, I. Low and Y. Zhang, Reappraisal of dark matter co-annihilating with a top or bottom partner, Phys. Rev. D 96 (2017) 015008 [arXiv:1703.02977] [INSPIRE].
  29. [29]
    A. Vairo, Quarkonium dissociation in a thermal bath, AIP Conf. Proc. 1701 (2016) 020017 [arXiv:1501.06367] [INSPIRE].
  30. [30]
    M. Laine and M. Meyer, Standard model thermodynamics across the electroweak crossover, JCAP 07 (2015) 035 [arXiv:1503.04935] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Laine, O. Philipsen, P. Romatschke and M. Tassler, Real-time static potential in hot QCD, JHEP 03 (2007) 054 [hep-ph/0611300] [INSPIRE].
  32. [32]
    N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky, Static quark-antiquark pairs at finite temperature, Phys. Rev. D 78 (2008) 014017 [arXiv:0804.0993] [INSPIRE].
  33. [33]
    N. Brambilla et al., Heavy quarkonium in a weakly-coupled quark-gluon plasma below the melting temperature, JHEP 09 (2010) 038 [arXiv:1007.4156] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    D. Kharzeev and H. Satz, Quarkonium interactions in hadronic matter, Phys. Lett. B 334 (1994) 155 [hep-ph/9405414] [INSPIRE].
  35. [35]
    L. Grandchamp and R. Rapp, Thermal versus direct J/Ψ production in ultrarelativistic heavy ion collisions, Phys. Lett. B 523 (2001) 60 [hep-ph/0103124] [INSPIRE].
  36. [36]
    N. Brambilla, M.A. Escobedo, J. Ghiglieri and A. Vairo, Thermal width and gluo-dissociation of quarkonium in pNRQCD, JHEP 12 (2011) 116 [arXiv:1109.5826] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    N. Brambilla, M.A. Escobedo, J. Ghiglieri and A. Vairo, Thermal width and quarkonium dissociation by inelastic parton scattering, JHEP 05 (2013) 130 [arXiv:1303.6097] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    D. Bödeker and M. Laine, Heavy quark chemical equilibration rate as a transport coefficient, JHEP 07 (2012) 130 [arXiv:1205.4987] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. D 55 (1997) 5853] [hep-ph/9407339] [INSPIRE].
  40. [40]
    K. Kopp and T. Okui, Effective field theory for a heavy Majorana fermion, Phys. Rev. D 84 (2011) 093007 [arXiv:1108.2702] [INSPIRE].
  41. [41]
    S. Biondini, N. Brambilla, M.A. Escobedo and A. Vairo, An effective field theory for non-relativistic Majorana neutrinos, JHEP 12 (2013) 028 [arXiv:1307.7680] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    E. Braaten, Introduction to the NRQCD factorization approach to heavy quarkonium, talk given at the 3rd International Workshop on Particle Physics Phenomenology, November 14-17, Taipei, Taiwan (1996), hep-ph/9702225 [INSPIRE].
  43. [43]
    H. Goldberg, Constraint on the photino mass from cosmology, Phys. Rev. Lett. 50 (1983) 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE].
  44. [44]
    P. Ciafaloni et al., On the importance of electroweak corrections for majorana dark matter indirect detection, JCAP 06 (2011) 018 [arXiv:1104.2996] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Biondini and M. Laine, Re-derived overclosure bound for the inert doublet model, JHEP 08 (2017) 047 [arXiv:1706.01894] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    Y. Burnier, M. Laine and M. Vepsäläinen, Heavy quarkonium in any channel in resummed hot QCD, JHEP 01 (2008) 043 [arXiv:0711.1743] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Laine, A resummed perturbative estimate for the quarkonium spectral function in hot QCD, JHEP 05 (2007) 028 [arXiv:0704.1720] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Pineda and J. Soto, Effective field theory for ultrasoft momenta in NRQCD and NRQED, Nucl. Phys. Proc. Suppl. 64 (1998) 428 [hep-ph/9707481] [INSPIRE].
  49. [49]
    N. Brambilla, A. Pineda, J. Soto and A. Vairo, Potential NRQCD: an effective theory for heavy quarkonium, Nucl. Phys. B 566 (2000) 275 [hep-ph/9907240] [INSPIRE].
  50. [50]
    M.A. Escobedo and J. Soto, Non-relativistic bound states at finite temperature (I): the hydrogen atom, Phys. Rev. A 78 (2008) 032520 [arXiv:0804.0691] [INSPIRE].
  51. [51]
    M.A. Escobedo and J. Soto, Non-relativistic bound states at finite temperature (II): the muonic hydrogen, Phys. Rev. A 82 (2010) 042506 [arXiv:1008.0254] [INSPIRE].
  52. [52]
    J. Ghiglieri, Review of the EFT treatment of quarkonium at finite temperature, PoS ConfinementX (2012) 004 [arXiv:1303.6438] [INSPIRE].
  53. [53]
    S. Biondini, Potential non-relativistic effective field theories for colored particles and dark matter applications, in preparation.Google Scholar
  54. [54]
    R.D. Pisarski, Scattering amplitudes in hot gauge theories, Phys. Rev. Lett. 63 (1989) 1129 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    E. Braaten and R.D. Pisarski, Soft amplitudes in hot gauge theories: a general analysis, Nucl. Phys. B 337 (1990) 569 [INSPIRE].
  56. [56]
    A. Vairo, Effective field theories for heavy quarkonium at finite temperature, PoS(CONFINEMENT8)002 [arXiv:0901.3495] [INSPIRE].
  57. [57]
    J. Ghiglieri, Effective field theories of QCD for heavy quarkonia at finite temperature, Ph.D. thesis, Technische Universität München, München, Germany (2011), arXiv:1201.2920 [INSPIRE].
  58. [58]
    N. Brambilla, A. Vairo and T. Rosch, Effective field theory Lagrangians for baryons with two and three heavy quarks, Phys. Rev. D 72 (2005) 034021 [hep-ph/0506065] [INSPIRE].
  59. [59]
    T. Binder, L. Covi and K. Mukaida, Dark matter Sommerfeld-enhanced annihilation and bound-state decay at finite temperature, Phys. Rev. D 98 (2018) 115023 [arXiv:1808.06472] [INSPIRE].
  60. [60]
    N. Brambilla, M.A. Escobedo, J. Soto and A. Vairo, Heavy quarkonium suppression in a fireball, Phys. Rev. D 97 (2018) 074009 [arXiv:1711.04515] [INSPIRE].
  61. [61]
    J. Harz and K. Petraki, Higgs enhancement for the dark matter relic density, Phys. Rev. D 97 (2018) 075041 [arXiv:1711.03552] [INSPIRE].
  62. [62]
    S. Biondini, Bound-state effects for dark matter with Higgs-like mediators, JHEP 06 (2018) 104 [arXiv:1805.00353] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    Y. Bai and J. Berger, Fermion portal dark matter, JHEP 11 (2013) 171 [arXiv:1308.0612] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    H. An, L.-T. Wang and H. Zhang, Dark matter with t-channel mediator: a simple step beyond contact interaction, Phys. Rev. D 89 (2014) 115014 [arXiv:1308.0592] [INSPIRE].
  65. [65]
    S. Chang, R. Edezhath, J. Hutchinson and M. Luty, Effective WIMPs, Phys. Rev. D 89 (2014) 015011 [arXiv:1307.8120] [INSPIRE].
  66. [66]
    A. DiFranzo, K.I. Nagao, A. Rajaraman and T.M.P. Tait, Simplified models for dark matter interacting with quarks, JHEP 11 (2013) 014 [Erratum ibid. 01 (2014) 162] [arXiv:1308.2679] [INSPIRE].
  67. [67]
    M. Garny, A. Ibarra, S. Rydbeck and S. Vogl, Majorana dark matter with a coloured mediator: collider vs direct and indirect searches, JHEP 06 (2014) 169 [arXiv:1403.4634] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    ATLAS collaboration, Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector, JHEP 01 (2018) 126 [arXiv:1711.03301] [INSPIRE].
  69. [69]
    CMS collaboration, Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at \( \sqrt{s}=13 \) TeV, Phys. Rev. D 97 (2018) 092005 [arXiv:1712.02345] [INSPIRE].
  70. [70]
    CMS collaboration, Search for new physics in the monophoton final state in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 10 (2017) 073 [arXiv:1706.03794] [INSPIRE].
  71. [71]
    CMS collaboration, Search for associated production of dark matter with a Higgs boson decaying to bb or γγ at \( \sqrt{s}=13 \) TeV, JHEP 10 (2017) 180 [arXiv:1703.05236] [INSPIRE].
  72. [72]
    ATLAS collaboration, Search for dark matter in association with a Higgs boson decaying to b-quarks in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 765 (2017) 11 [arXiv:1609.04572] [INSPIRE].
  73. [73]
    ATLAS collaboration, Search for dark matter at \( \sqrt{s}=13 \) TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector, Eur. Phys. J. C 77 (2017) 393 [arXiv:1704.03848] [INSPIRE].
  74. [74]
    A. Alloul et al., FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  75. [75]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  77. [77]
    DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  78. [78]
    D. Dercks et al., CheckMATE 2: from the model to the limit, Comput. Phys. Commun. 221 (2017) 383 [arXiv:1611.09856] [INSPIRE].
  79. [79]
    ATLAS collaboration, Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector, ATLAS-CONF-2017-060 (2017).
  80. [80]
    CMS collaboration, Search for supersymmetry in multijet events with missing transverse momentum in proton-proton collisions at 13 TeV, Phys. Rev. D 96 (2017) 032003 [arXiv:1704.07781] [INSPIRE].
  81. [81]
    CMS collaboration, Search for direct production of supersymmetric partners of the top quark in the all-jets final state in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 10 (2017) 005 [arXiv:1707.03316] [INSPIRE].
  82. [82]
    ATLAS collaboration, Search for top-squark pair production in final states with one lepton, jets and missing transverse momentum using 36 fb −1 of \( \sqrt{s}=13 \) TeV pp collision data with the ATLAS detector, JHEP 06 (2018) 108 [arXiv:1711.11520] [INSPIRE].
  83. [83]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].
  84. [84]
    M. Drees and M. Nojiri, Neutralino-nucleon scattering revisited, Phys. Rev. D 48 (1993) 3483 [hep-ph/9307208] [INSPIRE].
  85. [85]
    J. Hisano, K. Ishiwata and N. Nagata, Gluon contribution to the dark matter direct detection, Phys. Rev. D 82 (2010) 115007 [arXiv:1007.2601] [INSPIRE].
  86. [86]
    micrOMEGAs: the users manual, version 5.0, https://lapth.cnrs.fr/micromegas/v5.0/manual_5.0.pdf.
  87. [87]
    P. Gondolo and S. Scopel, On the sbottom resonance in dark matter scattering, JCAP 10 (2013) 032 [arXiv:1307.4481] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    Fermi-LAT, DES collaboration, Searching for dark matter annihilation in recently discovered Milky Way satellites with Fermi-LAT, Astrophys. J. 834 (2017) 110 [arXiv:1611.03184] [INSPIRE].
  89. [89]
    A. Cuoco, J. Heisig, M. Korsmeier and M. Krämer, Constraining heavy dark matter with cosmic-ray antiprotons, JCAP 04 (2018) 004 [arXiv:1711.05274] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    A. Reinert and M.W. Winkler, A precision search for WIMPs with charged cosmic rays, JCAP 01 (2018) 055 [arXiv:1712.00002] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    C. Balázs et al., Sensitivity of the Cherenkov Telescope Array to the detection of a dark matter signal in comparison to direct detection and collider experiments, Phys. Rev. D 96 (2017) 083002 [arXiv:1706.01505] [INSPIRE].
  92. [92]
    L. Bergstrom, Radiative processes in dark matter photino annihilation, Phys. Lett. B 225 (1989) 372 [INSPIRE].
  93. [93]
    M. Garny, A. Ibarra and S. Vogl, Antiproton constraints on dark matter annihilations from internal electroweak bremsstrahlung, JCAP 07 (2011) 028 [arXiv:1105.5367] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    N.F. Bell, J.B. Dent, T.D. Jacques and T.J. Weiler, W/Z Bremsstrahlung as the dominant annihilation channel for dark matter, Phys. Rev. D 83 (2011) 013001 [arXiv:1009.2584] [INSPIRE].
  95. [95]
    F. Luo and T. You, Enhancement of Majorana dark matter annihilation through Higgs bremsstrahlung, JCAP 12 (2013) 024 [arXiv:1310.5129] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    T. Bringmann et al., Fermi LAT search for internal Bremsstrahlung signatures from dark matter annihilation, JCAP 07 (2012) 054 [arXiv:1203.1312] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    M. Garny, A. Ibarra, M. Pato and S. Vogl, Internal Bremsstrahlung signatures in light of direct dark matter searches, JCAP 12 (2013) 046 [arXiv:1306.6342] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    S.J. Clark, J.B. Dent, B. Dutta and L.E. Strigari, Catching p via s wave with indirect detection, arXiv:1901.01454 [INSPIRE].
  99. [99]
    DARWIN collaboration, DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017 [arXiv:1606.07001] [INSPIRE].
  100. [100]
    N. Brambilla, M.A. Escobedo, J. Soto and A. Vairo, Quarkonium suppression in heavy-ion collisions: an open quantum system approach, Phys. Rev. D 96 (2017) 034021 [arXiv:1612.07248] [INSPIRE].
  101. [101]
    J.-P. Blaizot and M.A. Escobedo, Quantum and classical dynamics of heavy quarks in a quark-gluon plasma, JHEP 06 (2018) 034 [arXiv:1711.10812] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  102. [102]
    T.J. Weiler, On the likely dominance of WIMP annihilation to fermion pair+W/Z (and implication for indirect detection), arXiv:1301.0021 [INSPIRE].
  103. [103]
    TUMQCD collaboration, Color screening in (2 + 1)-flavor QCD, Phys. Rev. D 98 (2018) 054511 [arXiv:1804.10600] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Van Swinderen InstituteUniversity of GroningenGroningenNetherlands
  2. 2.Max-Planck-Institut für Kernphysik (MPIK)HeidelbergGermany

Personalised recommendations