Flavor violating Higgs couplings in minimal flavor violation

  • Jin-Jun Zhang
  • Min He
  • Xiao-Gang He
  • Xing-Bo YuanEmail author
Open Access
Regular Article - Theoretical Physics


Motivated by the recent LHC data on the lepton-flavor violating (LFV) decays h12 and Bs,d12, we study the Higgs-mediated flavor-changing neutral current (FCNC) interactions in the effective field theory (EFT) approach without and with the minimal flavor violation (MFV) hypothesis, and concentrate on the later. After considering the B and K physics data, the various LFV processes, and the LHC Higgs data, severe constraints on the Higgs FCNC couplings are derived, which are dominated by the LHC Higgs data, the \( {B}_s-{\overline{B}}_s \) mixing, and the μ decay. In the general case and the MFV framework, allowed ranges of various observables are obtained, such as \( \mathrm{\mathcal{B}} \)(Bs12), \( \mathrm{\mathcal{B}} \)(h12), \( \mathrm{\mathcal{B}} \)(hq1q2), and the branching ratio of μe conversion in Al. Future prospects of searching for the Higgs FCNC interactions at the low-energy experiments and the LHC are discussed.


Heavy Quark Physics Higgs Physics Beyond Standard Model CP violation 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    C. Csáki, C. Grojean and J. Terning, Alternatives to an elementary Higgs, Rev. Mod. Phys. 88 (2016) 045001 [arXiv:1512.00468] [INSPIRE].
  4. [4]
    C. Mariotti and G. Passarino, Higgs boson couplings: measurements and theoretical interpretation, Int. J. Mod. Phys. A 32 (2017) 1730003 [arXiv:1612.00269] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    R. Harnik, J. Kopp and J. Zupan, Flavor violating Higgs decays, JHEP 03 (2013) 026 [arXiv:1209.1397] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    X.-G. He and G. Valencia, The Z\( b\overline{b} \) decay asymmetry and left-right models, Phys. Rev. D 66 (2002) 013004 [Erratum ibid. D 66 (2002) 079901] [hep-ph/0203036] [INSPIRE].
  7. [7]
    C.-W. Chiang, N.G. Deshpande, X.-G. He and J. Jiang, The family SU(2)l × SU(2)h × U(1) model, Phys. Rev. D 81 (2010) 015006 [arXiv:0911.1480] [INSPIRE].ADSGoogle Scholar
  8. [8]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Crivellin, A. Kokulu and C. Greub, Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure, Phys. Rev. D 87 (2013) 094031 [arXiv:1303.5877] [INSPIRE].ADSGoogle Scholar
  10. [10]
    LHCb collaboration, Search for the lepton-flavour violating decays B ( s)0 → e ± μ , JHEP 03 (2018) 078 [arXiv:1710.04111] [INSPIRE].
  11. [11]
    CMS collaboration, Search for lepton flavour violating decays of the Higgs boson to eτ and eμ in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 763 (2016) 472 [arXiv:1607.03561] [INSPIRE].
  12. [12]
    CMS collaboration, Search for lepton flavour violating decays of the Higgs boson to μτ and eτ in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 06 (2018) 001 [arXiv:1712.07173] [INSPIRE].
  13. [13]
    CMS collaboration, Search for lepton-flavour-violating decays of the Higgs boson, Phys. Lett. B 749 (2015) 337 [arXiv:1502.07400] [INSPIRE].
  14. [14]
    G. Blankenburg, J. Ellis and G. Isidori, Flavour-changing decays of a 125 GeV Higgs-like particle, Phys. Lett. B 712 (2012) 386 [arXiv:1202.5704] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    X.-G. He, J. Tandean and Y.-J. Zheng, Higgs decay hμτ with minimal flavor violation, JHEP 09 (2015) 093 [arXiv:1507.02673] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Mu2e collaboration, Expression of interest for evolution of the Mu2e experiment, arXiv:1802.02599 [INSPIRE].
  17. [17]
    LHCb collaboration, Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  18. [18]
    LHCb collaboration, Test of lepton universality with B 0K *0 + decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
  19. [19]
    Heavy Flavor Averaging Group (HFAG) collaboration, Averages of b-hadron, c-hadron and τ-lepton properties as of summer 2014, arXiv:1412.7515 [INSPIRE].
  20. [20]
    S. Fajfer, J.F. Kamenik, I. Nisandzic and J. Zupan, Implications of lepton flavor universality violations in B decays, Phys. Rev. Lett. 109 (2012) 161801 [arXiv:1206.1872] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Crivellin, C. Greub and A. Kokulu, Explaining BDτν, BD * τν and Bτν in a 2HDM of type-III, Phys. Rev. D 86 (2012) 054014 [arXiv:1206.2634] [INSPIRE].ADSGoogle Scholar
  22. [22]
    K.-F. Chen, W.-S. Hou, C. Kao and M. Kohda, When the Higgs meets the top: search for tch 0 at the LHC, Phys. Lett. B 725 (2013) 378 [arXiv:1304.8037] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C.S. Kim, Y.W. Yoon and X.-B. Yuan, Exploring top quark FCNC within 2HDM type-III in association with flavor physics, JHEP 12 (2015) 038 [arXiv:1509.00491] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Crivellin, J. Heeck and P. Stoffer, A perturbed lepton-specific two-Higgs-doublet model facing experimental hints for physics beyond the Standard Model, Phys. Rev. Lett. 116 (2016) 081801 [arXiv:1507.07567] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R.S. Chivukula and H. Georgi, Composite technicolor Standard Model, Phys. Lett. B 188 (1987) 99 [INSPIRE].
  26. [26]
    A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the Standard Model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].
  27. [27]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
  28. [28]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    A.L. Fitzpatrick, G. Perez and L. Randall, Flavor anarchy in a Randall-Sundrum model with 5D minimal flavor violation and a low Kaluza-Klein scale, Phys. Rev. Lett. 100 (2008) 171604 [arXiv:0710.1869] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Azatov, M. Toharia and L. Zhu, Higgs mediated FCNC’s in warped extra dimensions, Phys. Rev. D 80 (2009) 035016 [arXiv:0906.1990] [INSPIRE].ADSGoogle Scholar
  31. [31]
    M. Redi and A. Weiler, Flavor and CP invariant composite Higgs models, JHEP 11 (2011) 108 [arXiv:1106.6357] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    B. Bellazzini, C. Csáki and J. Serra, Composite Higgses, Eur. Phys. J. C 74 (2014) 2766 [arXiv:1401.2457] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    F. del Aguila, M. Pérez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP 09 (2000) 011 [hep-ph/0007316] [INSPIRE].
  34. [34]
    H. Bélusca-Maïto, A. Falkowski, D. Fontes, J.C. Romão and J.P. Silva, Higgs EFT for 2HDM and beyond, Eur. Phys. J. C 77 (2017) 176 [arXiv:1611.01112] [INSPIRE].
  35. [35]
    S. Davidson, μeγ in the 2HDM: an exercise in EFT, Eur. Phys. J. C 76 (2016) 258 [arXiv:1601.01949] [INSPIRE].
  36. [36]
    S. Dawson and C.W. Murphy, Standard Model EFT and extended scalar sectors, Phys. Rev. D 96 (2017) 015041 [arXiv:1704.07851] [INSPIRE].ADSGoogle Scholar
  37. [37]
    K. Agashe and R. Contino, Composite Higgs-mediated FCNC, Phys. Rev. D 80 (2009) 075016 [arXiv:0906.1542] [INSPIRE].ADSGoogle Scholar
  38. [38]
    J. Aebischer, A. Crivellin, M. Fael and C. Greub, Matching of gauge invariant dimension-six operators for bs and bc transitions, JHEP 05 (2016) 037 [arXiv:1512.02830] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Raidal and A. Santamaria, Muon electron conversion in nuclei versus μeγ: an effective field theory point of view, Phys. Lett. B 421 (1998) 250 [hep-ph/9710389] [INSPIRE].
  40. [40]
    A. Crivellin, S. Davidson, G.M. Pruna and A. Signer, Renormalisation-group improved analysis of μe processes in a systematic effective-field-theory approach, JHEP 05 (2017) 117 [arXiv:1702.03020] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    C.-W. Chiang, X.-G. He, F. Ye and X.-B. Yuan, Constraints and implications on Higgs FCNC couplings from precision measurement of B sμ + μ decay, Phys. Rev. D 96 (2017) 035032 [arXiv:1703.06289] [INSPIRE].ADSGoogle Scholar
  42. [42]
    G. Colangelo, E. Nikolidakis and C. Smith, Supersymmetric models with minimal flavour violation and their running, Eur. Phys. J. C 59 (2009) 75 [arXiv:0807.0801] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    L. Mercolli and C. Smith, EDM constraints on flavored CP-violating phases, Nucl. Phys. B 817 (2009) 1 [arXiv:0902.1949] [INSPIRE].
  44. [44]
    X.-G. He, C.-J. Lee, S.-F. Li and J. Tandean, Fermion EDMs with minimal flavor violation, JHEP 08 (2014) 019 [arXiv:1404.4436] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    X.-G. He, C.-J. Lee, S.-F. Li and J. Tandean, Large electron electric dipole moment in minimal flavor violation framework with Majorana neutrinos, Phys. Rev. D 89 (2014) 091901 [arXiv:1401.2615] [INSPIRE].ADSGoogle Scholar
  46. [46]
    X.-G. He, C.-J. Lee, J. Tandean and Y.-J. Zheng, Seesaw models with minimal flavor violation, Phys. Rev. D 91 (2015) 076008 [arXiv:1411.6612] [INSPIRE].ADSGoogle Scholar
  47. [47]
    C.-W. Chiang, X.-G. He, J. Tandean and X.-B. Yuan, \( {R}_{K^{\left(\ast \right)}} \) and related \( b\to s\ell \overline{\ell} \) anomalies in minimal flavor violation framework with Z boson, Phys. Rev. D 96 (2017) 115022 [arXiv:1706.02696] [INSPIRE].ADSGoogle Scholar
  48. [48]
    V. Cirigliano, B. Grinstein, G. Isidori and M.B. Wise, Minimal flavor violation in the lepton sector, Nucl. Phys. B 728 (2005) 121 [hep-ph/0507001] [INSPIRE].
  49. [49]
    V. Cirigliano and B. Grinstein, Phenomenology of minimal lepton flavor violation, Nucl. Phys. B 752 (2006) 18 [hep-ph/0601111] [INSPIRE].
  50. [50]
    R. Alonso, G. Isidori, L. Merlo, L.A. Muñoz and E. Nardi, Minimal flavour violation extensions of the seesaw, JHEP 06 (2011) 037 [arXiv:1103.5461] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  51. [51]
    D.N. Dinh, L. Merlo, S.T. Petcov and R. Vega-Álvarez, Revisiting minimal lepton flavour violation in the light of leptonic CP-violation, JHEP 07 (2017) 089 [arXiv:1705.09284] [INSPIRE].
  52. [52]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μe, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].
  53. [53]
    A.J. Buras, S. Jager and J. Urban, Master formulae for ΔF = 2 NLO QCD factors in the Standard Model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [INSPIRE].
  54. [54]
    G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].
  55. [55]
    ETM collaboration, B-physics from N f = 2 tmQCD: the Standard Model and beyond, JHEP 03 (2014) 016 [arXiv:1308.1851] [INSPIRE].
  56. [56]
    Fermilab Lattice and MILC collaborations, B ( s)0 -mixing matrix elements from lattice QCD for the Standard Model and beyond, Phys. Rev. D 93 (2016) 113016 [arXiv:1602.03560] [INSPIRE].
  57. [57]
    M. Artuso, G. Borissov and A. Lenz, CP violation in the B s0 system, Rev. Mod. Phys. 88 (2016) 045002 [arXiv:1511.09466] [INSPIRE].
  58. [58]
    G. Buchalla and A.J. Buras, QCD corrections to rare K and B decays for arbitrary top quark mass, Nucl. Phys. B 400 (1993) 225 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M. Misiak and J. Urban, QCD corrections to FCNC decays mediated by Z penguins and W boxes, Phys. Lett. B 451 (1999) 161 [hep-ph/9901278] [INSPIRE].
  60. [60]
    G. Buchalla and A.J. Buras, The rare decays \( K\to \pi \nu \overline{\nu} \) , \( B\to X\nu \overline{\nu} \) and B + : an update, Nucl. Phys. B 548 (1999) 309 [hep-ph/9901288] [INSPIRE].
  61. [61]
    C. Bobeth, M. Gorbahn and E. Stamou, Electroweak corrections to B s,d + , Phys. Rev. D 89 (2014) 034023 [arXiv:1311.1348] [INSPIRE].ADSGoogle Scholar
  62. [62]
    T. Hermann, M. Misiak and M. Steinhauser, Three-loop QCD corrections to B sμ + μ , JHEP 12 (2013) 097 [arXiv:1311.1347] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou and M. Steinhauser, B s,d + in the Standard Model with reduced theoretical uncertainty, Phys. Rev. Lett. 112 (2014) 101801 [arXiv:1311.0903] [INSPIRE].
  64. [64]
    X.-Q. Li, J. Lu and A. Pich, B s. d0 →  + decays in the aligned two-Higgs-doublet model, JHEP 06 (2014) 022 [arXiv:1404.5865] [INSPIRE].ADSGoogle Scholar
  65. [65]
    X.-D. Cheng, Y.-D. Yang and X.-B. Yuan, Revisiting B sμ + μ in the two-Higgs doublet models with Z 2 symmetry, Eur. Phys. J. C 76 (2016) 151 [arXiv:1511.01829] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    K. De Bruyn et al., Probing new physics via the B s0 → μ + μ effective lifetime, Phys. Rev. Lett. 109 (2012) 041801 [arXiv:1204.1737] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    A.J. Buras, R. Fleischer, J. Girrbach and R. Knegjens, Probing new physics with the B sμ + μ time-dependent rate, JHEP 07 (2013) 077 [arXiv:1303.3820] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    D. Chang, W.S. Hou and W.-Y. Keung, Two loop contributions of flavor changing neutral Higgs bosons to μ, Phys. Rev. D 48 (1993) 217 [hep-ph/9302267] [INSPIRE].
  69. [69]
    R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. D 76 (2007) 059902] [hep-ph/0203110] [INSPIRE].
  70. [70]
    J.R. Ellis, K.A. Olive and C. Savage, Hadronic uncertainties in the elastic scattering of supersymmetric dark matter, Phys. Rev. D 77 (2008) 065026 [arXiv:0801.3656] [INSPIRE].ADSGoogle Scholar
  71. [71]
    R.D. Young and A.W. Thomas, Recent results on nucleon sigma terms in lattice QCD, Nucl. Phys. A 844 (2010) 266C [arXiv:0911.1757] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    T. Suzuki, D.F. Measday and J.P. Roalsvig, Total nuclear capture rates for negative muons, Phys. Rev. C 35 (1987) 2212 [INSPIRE].ADSGoogle Scholar
  73. [73]
    M. Jung, X.-Q. Li and A. Pich, Exclusive radiative B-meson decays within the aligned two-Higgs-doublet model, JHEP 10 (2012) 063 [arXiv:1208.1251] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  75. [75]
    CKMfitter Group collaboration, CP violation and the CKM matrix: assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41 (2005) 1 [hep-ph/0406184] [INSPIRE].
  76. [76]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 77 (2017) 112 [arXiv:1607.00299] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    HFLAV collaboration, Averages of b-hadron, c-hadron and τ-lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
  79. [79]
    MEG collaboration, Search for the lepton flavour violating decay μ +e + γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].
  80. [80]
    SINDRUM II collaboration, A search for muon to electron conversion in muonic gold, Eur. Phys. J. C 47 (2006) 337 [INSPIRE].
  81. [81]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  82. [82]
    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
  83. [83]
    J. Bernon and B. Dumont, Lilith: a tool for constraining new physics from Higgs measurements, Eur. Phys. J. C 75 (2015) 440 [arXiv:1502.04138] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    CDF and D0 collaborations, Higgs boson studies at the Tevatron, Phys. Rev. D 88 (2013) 052014 [arXiv:1303.6346] [INSPIRE].
  85. [85]
    A.J. Buras and J. Girrbach, Towards the identification of new physics through quark flavour violating processes, Rept. Prog. Phys. 77 (2014) 086201 [arXiv:1306.3775] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    S. Bertolini, A. Maiezza and F. Nesti, Present and future K and B meson mixing constraints on TeV scale left-right symmetry, Phys. Rev. D 89 (2014) 095028 [arXiv:1403.7112] [INSPIRE].ADSGoogle Scholar
  87. [87]
    D. Barducci and A.J. Helmboldt, Quark flavour-violating Higgs decays at the ILC, JHEP 12 (2017) 105 [arXiv:1710.06657] [INSPIRE].
  88. [88]
    MEG II collaboration, The design of the MEG II experiment, Eur. Phys. J. C 78 (2018) 380 [arXiv:1801.04688] [INSPIRE].
  89. [89]
    M. Lindner, M. Platscher and F.S. Queiroz, A call for new physics: the muon anomalous magnetic moment and lepton flavor violation, Phys. Rept. 731 (2018) 1 [arXiv:1610.06587] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.School of Physics and Information EngineeringShanxi Normal UniversityLinfenChina
  2. 2.Tsung-Dao Lee Institute, and School of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Department of PhysicsNational Taiwan UniversityTaipeiTaiwan
  4. 4.Physics DivisionNational Center for Theoretical SciencesHsinchuTaiwan

Personalised recommendations