Journal of High Energy Physics

, 2017:54 | Cite as

Exclusive photoproduction of a γ ρ pair with a large invariant mass

  • R. Boussarie
  • B. Pire
  • L. Szymanowski
  • S. WallonEmail author
Open Access
Regular Article - Theoretical Physics


Exclusive photoproduction of a γ ρ pair in the kinematics where the pair has a large invariant mass and the final nucleon has a small transverse momentum is described in the collinear factorization framework. The scattering amplitude is calculated at leading order in α s and the differential cross sections for the process where the ρ−meson is either longitudinally or transversely polarized are estimated in the kinematics of the JLab 12-GeV experiments.


QCD Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    K. Goeke, M.V. Polyakov and M. Vanderhaeghen, Hard exclusive reactions and the structure of hadrons, Prog. Part. Nucl. Phys. 47 (2001) 401 [hep-ph/0106012] [INSPIRE].
  2. [2]
    M. Diehl, Generalized parton distributions, Phys. Rept. 388 (2003) 41 [hep-ph/0307382] [INSPIRE].
  3. [3]
    A.V. Belitsky and A.V. Radyushkin, Unraveling hadron structure with generalized parton distributions, Phys. Rept. 418 (2005) 1 [hep-ph/0504030] [INSPIRE].
  4. [4]
    S. Boffi and B. Pasquini, Generalized parton distributions and the structure of the nucleon, Riv. Nuovo Cim. 30 (2007) 387 [arXiv:0711.2625] [INSPIRE].ADSGoogle Scholar
  5. [5]
    V.D. Burkert and M. Diehl, Generalized parton distributions, in Electromagnetic interactions and hadronic structure, F. Close et al. eds., (2007), pg. 359 [INSPIRE].
  6. [6]
    M. Guidal, Generalized parton distributions and deep virtual Compton scattering, Prog. Part. Nucl. Phys. 61 (2008) 89 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D. Yu. Ivanov, B. Pire, L. Szymanowski and O.V. Teryaev, Probing chiral odd GPD’s in diffractive electroproduction of two vector mesons, Phys. Lett. B 550 (2002) 65 [hep-ph/0209300] [INSPIRE].
  8. [8]
    R. Enberg, B. Pire and L. Szymanowski, Transversity GPD in photo- and electroproduction of two vector mesons, Eur. Phys. J. C 47 (2006) 87 [hep-ph/0601138] [INSPIRE].
  9. [9]
    M. El Beiyad, B. Pire, M. Segond, L. Szymanowski and S. Wallon, Photoproduction of a πρ T pair with a large invariant mass and transversity generalized parton distribution, Phys. Lett. B 688 (2010) 154 [arXiv:1001.4491] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Kumano, M. Strikman and K. Sudoh, Novel two-to-three hard hadronic processes and possible studies of generalized parton distributions at hadron facilities, Phys. Rev. D 80 (2009) 074003 [arXiv:0905.1453] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A.B. Larionov and M. Strikman, Exploring QCD dynamics in medium energy γA semiexclusive collisions, Phys. Lett. B 760 (2016) 753 [arXiv:1606.00761] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R. Boussarie, B. Pire, L. Szymanowski and S. Wallon, On γNγρN at large γρ invariant mass, in Photon 2015: International Conference on the Structure and Interactions of the Photon and the 21th International Workshop on Photon-Photon Collisions and International Workshop on High Energy Photon Linear Colliders, Novosibirsk Russia June 15-19 2015 [arXiv:1511.04371] [INSPIRE].
  13. [13]
    R. Boussarie, B. Pire, L. Szymanowski and S. Wallon, Revealing transversity GPDs through the photoproduction of a photon and a ρ meson, EPJ Web Conf. 112 (2016) 01006 [arXiv:1602.01774] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    LHPC and SESAM collaborations, P. Hagler, J.W. Negele, D.B. Renner, W. Schroers, T. Lippert and K. Schilling, Moments of nucleon generalized parton distributions in lattice QCD, Phys. Rev. D 68 (2003) 034505 [hep-lat/0304018] [INSPIRE].
  15. [15]
    QCDSF collaboration, M. Gockeler et al., Generalized parton distributions from lattice QCD, Phys. Rev. Lett. 92 (2004) 042002 [hep-ph/0304249] [INSPIRE].
  16. [16]
    UKQCD and QCDSF collaborations, M. Gockeler et al., Quark helicity flip generalized parton distributions from two-flavor lattice QCD, Phys. Lett. B 627 (2005) 113 [hep-lat/0507001] [INSPIRE].
  17. [17]
    UKQCD and QCDSF collaborations, M. Gockeler et al., Transverse spin structure of the nucleon from lattice QCD simulations, Phys. Rev. Lett. 98 (2007) 222001 [hep-lat/0612032] [INSPIRE].
  18. [18]
    G.P. Lepage and S.J. Brodsky, Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D 22 (1980) 2157 [INSPIRE].ADSGoogle Scholar
  19. [19]
    G.R. Farrar, G.F. Sterman and H.-Y. Zhang, Absence of Sudakov factors in large angle photoproduction and Compton scattering, Phys. Rev. Lett. 62 (1989) 2229 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J.C. Collins, L. Frankfurt and M. Strikman, Factorization for hard exclusive electroproduction of mesons in QCD, Phys. Rev. D 56 (1997) 2982 [hep-ph/9611433] [INSPIRE].
  21. [21]
    D. Müller, D. Robaschik, B. Geyer, F.M. Dittes and J. Hořejši, Wave functions, evolution equations and evolution kernels from light ray operators of QCD, Fortsch. Phys. 42 (1994) 101 [hep-ph/9812448] [INSPIRE].
  22. [22]
    E.R. Berger, M. Diehl and B. Pire, Time-like Compton scattering: exclusive photoproduction of lepton pairs, Eur. Phys. J. C 23 (2002) 675 [hep-ph/0110062] [INSPIRE].
  23. [23]
    B. Pire, L. Szymanowski and J. Wagner, NLO corrections to timelike, spacelike and double deeply virtual Compton scattering, Phys. Rev. D 83 (2011) 034009 [arXiv:1101.0555] [INSPIRE].ADSGoogle Scholar
  24. [24]
    I.V. Anikin, B. Pire and O.V. Teryaev, On the gauge invariance of the DVCS amplitude, Phys. Rev. D 62 (2000) 071501 [hep-ph/0003203] [INSPIRE].
  25. [25]
    V.M. Braun, A.N. Manashov and B. Pirnay, Finite-t and target mass corrections to deeply virtual Compton scattering, Phys. Rev. Lett. 109 (2012) 242001 [arXiv:1209.2559] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    P. Ball and V.M. Braun, The ρ meson light cone distribution amplitudes of leading twist revisited, Phys. Rev. D 54 (1996) 2182 [hep-ph/9602323] [INSPIRE].
  27. [27]
    M. Diehl, Generalized parton distributions with helicity flip, Eur. Phys. J. C 19 (2001) 485 [hep-ph/0101335] [INSPIRE].
  28. [28]
    A.V. Radyushkin, Double distributions and evolution equations, Phys. Rev. D 59 (1999) 014030 [hep-ph/9805342] [INSPIRE].
  29. [29]
    S.V. Goloskokov and P. Kroll, Transversity in hard exclusive electroproduction of pseudoscalar mesons, Eur. Phys. J. A 47 (2011) 112 [arXiv:1106.4897] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Glück, E. Reya and A. Vogt, Dynamical parton distributions revisited, Eur. Phys. J. C 5 (1998) 461 [hep-ph/9806404] [INSPIRE].
  31. [31]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Alekhin, J. Blumlein and S. Moch, Parton distribution functions and benchmark cross sections at NNLO, Phys. Rev. D 86 (2012) 054009 [arXiv:1202.2281] [INSPIRE].ADSGoogle Scholar
  33. [33]
    J. Gao et al., CT10 next-to-next-to-leading order global analysis of QCD, Phys. Rev. D 89 (2014) 033009 [arXiv:1302.6246] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Gluck, E. Reya, M. Stratmann and W. Vogelsang, Models for the polarized parton distributions of the nucleon, Phys. Rev. D 63 (2001) 094005 [hep-ph/0011215] [INSPIRE].
  35. [35]
    M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F. Murgia and A. Prokudin, Simultaneous extraction of transversity and Collins functions from new SIDIS and e + e data, Phys. Rev. D 87 (2013) 094019 [arXiv:1303.3822] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Burkardt, Impact parameter dependent parton distributions and off forward parton distributions for ζ → 0, Phys. Rev. D 62 (2000) 071503 [Erratum ibid. D 66 (2002) 119903] [hep-ph/0005108] [INSPIRE].
  37. [37]
    J.P. Ralston and B. Pire, Femtophotography of protons to nuclei with deeply virtual Compton scattering, Phys. Rev. D 66 (2002) 111501 [hep-ph/0110075] [INSPIRE].
  38. [38]
    M. Diehl, Generalized parton distributions in impact parameter space, Eur. Phys. J. C 25 (2002) 223 [Erratum ibid. C 31 (2003) 277] [hep-ph/0205208] [INSPIRE].
  39. [39]
    M. Burkardt, Transverse deformation of parton distributions and transversity decomposition of angular momentum, Phys. Rev. D 72 (2005) 094020 [hep-ph/0505189] [INSPIRE].
  40. [40]
    M. Diehl and P. Hagler, Spin densities in the transverse plane and generalized transversity distributions, Eur. Phys. J. C 44 (2005) 87 [hep-ph/0504175] [INSPIRE].
  41. [41]
    A. Mukherjee, D. Chakrabarti and R. Manohar, Chiral odd generalized parton distributions in position space, AIP Conf. Proc. 1149 (2009) 533 [arXiv:0902.1461] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Diehl and P. Kroll, Nucleon form factors, generalized parton distributions and quark angular momentum, Eur. Phys. J. C 73 (2013) 2397 [arXiv:1302.4604] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Anselmino et al., Sivers effect for pion and kaon production in semi-inclusive deep inelastic scattering, Eur. Phys. J. A 39 (2009) 89 [arXiv:0805.2677] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    P. Kessler, The Weizsacker-Williams method and similar approximation methods in quantum electrodynamics, Acta Phys. Austriaca 41 (1975) 141 [INSPIRE].Google Scholar
  45. [45]
    S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Improving the Weizsacker-Williams approximation in electron-proton collisions, Phys. Lett. B 319 (1993) 339 [hep-ph/9310350] [INSPIRE].
  46. [46]
    H. Moutarde, B. Pire, F. Sabatie, L. Szymanowski and J. Wagner, Timelike and spacelike deeply virtual Compton scattering at next-to-leading order, Phys. Rev. D 87 (2013) 054029 [arXiv:1301.3819] [INSPIRE].ADSGoogle Scholar
  47. [47]
    B. Nizic, Beyond leading order perturbative QCD corrections to γγM + M (M = π, K), Phys. Rev. D 35 (1987) 80 [INSPIRE].ADSGoogle Scholar
  48. [48]
    G. Duplancic and B. Nizic, NLO perturbative QCD predictions for γγM + M (M = π, K), Phys. Rev. Lett. 97 (2006) 142003 [hep-ph/0607069] [INSPIRE].
  49. [49]
    LHC Forward Physics Working Group collaboration, K. Akiba et al., LHC forward physics, J. Phys. G 43 (2016) 110201 [arXiv:1611.05079] [INSPIRE].
  50. [50]
    D. Boer et al., Gluons and the quark sea at high energies: distributions, polarization, tomography, arXiv:1108.1713 [INSPIRE].
  51. [51]
    LHeC Study Group collaboration, J.L. Abelleira Fernandez et al., A Large Hadron electron Collider at CERN: report on the physics and design concepts for machine and detector, J. Phys. G 39 (2012) 075001 [arXiv:1206.2913] [INSPIRE].

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • R. Boussarie
    • 1
  • B. Pire
    • 2
  • L. Szymanowski
    • 3
  • S. Wallon
    • 1
    • 4
    Email author
  1. 1.LPT, Université Paris-Sud, CNRS, Université Paris-SaclayOrsayFrance
  2. 2.Centre de Physique Théorique, Ecole polytechnique, CNRS, Université Paris-SaclayPalaiseauFrance
  3. 3.National Center for Nuclear Research (NCBJ)WarsawPoland
  4. 4.UPMC Univ. Paris 06, Faculté de physiqueParis Cedex 05France

Personalised recommendations