Advertisement

Bosonic sectorized strings and the (DF)2 theory

  • Thales AzevedoEmail author
  • Renann Lipinski Jusinskas
  • Matheus Lize
Open Access
Regular Article - Theoretical Physics
  • 5 Downloads

Abstract

In this work, we investigate the bosonic chiral string in the sectorized inter- pretation, computing its spectrum, kinetic action and 3-point amplitudes. As expected, the bosonic ambitwistor string is recovered in the tensionless limit. We also consider an extension of the bosonic model with current algebras. In that case, we compute the effective action and show that it is essentially the same as the action of the mass-deformed (DF )2 theory found by Johansson and Nohle. Aspects which might seem somewhat contrived in the original construction — such as the inclusion of a scalar transforming in some real representation of the gauge group — are shown to follow very naturally from the worldsheet formulation of the theory.

Keywords

Bosonic Strings BRST Quantization String Field Theory Scattering Amplitudes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles in Arbitrary Dimensions, Phys. Rev. Lett.113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles: Scalars, Gluons and Gravitons, JHEP07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP07 (2014) 048 [arXiv:1311.2564] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    N. Berkovits, Infinite Tension Limit of the Pure Spinor Superstring, JHEP03 (2014) 017 [arXiv:1311.4156] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    F. Cachazo, S. He and E.Y. Yuan, Einstein-Yang-Mills Scattering Amplitudes From Scattering Equations, JHEP01 (2015) 121 [arXiv:1409.8256] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    F. Cachazo, S. He and E.Y. Yuan, Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM, JHEP07 (2015) 149 [arXiv:1412.3479] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    E. Casali, Y. Geyer, L. Mason, R. Monteiro and K.A. Roehrig, New Ambitwistor String Theories, JHEP11 (2015) 038 [arXiv:1506.08771] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    I. Bandos, Twistor/ambitwistor strings and null-superstrings in spacetime of D = 4, 10 and 11 dimensions, JHEP09 (2014) 086 [arXiv:1404.1299] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    W. Siegel, Amplitudes for left-handed strings, arXiv:1512.02569 [INSPIRE].
  10. [10]
    E. Casali and P. Tourkine, On the null origin of the ambitwistor string, JHEP11 (2016) 036 [arXiv:1606.05636] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    Y.-t. Huang, W. Siegel and E.Y. Yuan, Factorization of Chiral String Amplitudes, JHEP09 (2016) 101 [arXiv:1603.02588] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    R.L. Jusinskas, Notes on the ambitwistor pure spinor string, JHEP05 (2016) 116 [arXiv:1604.02915] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    O. Chandía and B.C. Vallilo, Ambitwistor pure spinor string in a type-II supergravity background, JHEP06 (2015) 206 [arXiv:1505.05122] [INSPIRE].
  14. [14]
    T. Azevedo and R.L. Jusinskas, Connecting the ambitwistor and the sectorized heterotic strings, JHEP10 (2017) 216 [arXiv:1707.08840] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    N. Berkovits and M. Lize, Field theory actions for ambitwistor string and superstring, JHEP09 (2018) 097 [arXiv:1807.07661] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    B. Zwiebach, Closed string field theory: Quantum action and the B-V master equation, Nucl. Phys.B 390 (1993) 33 [hep-th/9206084] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    H. Johansson and J. Nohle, Conformal Gravity from Gauge Theory, arXiv:1707.02965 [INSPIRE].
  18. [18]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev.D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
  19. [19]
    T. Azevedo and O.T. Engelund, Ambitwistor formulations of R2gravity and (DF )2gauge theories, JHEP11 (2017) 052 [arXiv:1707.02192] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    T. Azevedo, M. Chiodaroli, H. Johansson and O. Schlotterer, Heterotic and bosonic string amplitudes via field theory, JHEP10 (2018) 012 [arXiv:1803.05452] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    S. He, F. Teng and Y. Zhang, String amplitudes from field-theory amplitudes and vice versa, Phys. Rev. Lett.122 (2019) 211603 [arXiv:1812.03369] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. He, F. Teng and Y. Zhang, String Correlators: Recursive Expansion, Integration-by-Parts and Scattering Equations, JHEP09 (2019) 085 [arXiv:1907.06041] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-Point Superstring Disk Amplitude I. Pure Spinor Computation, Nucl. Phys.B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    O. Hohm, W. Siegel and B. Zwiebach, Doubled αt-geometry, JHEP02 (2014) 065 [arXiv:1306.2970] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    K. Lee, S.-J. Rey and J.A. Rosabal, A string theory which isn’t about strings, JHEP11 (2017) 172 [arXiv:1708.05707] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    E. Casali, Y. Herfray and P. Tourkine, The complex null string, Galilean conformal algebra and scattering equations, JHEP10 (2017) 164 [arXiv:1707.09900] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    M.M. Leite and W. Siegel, Chiral Closed strings: Four massless states scattering amplitude, JHEP01 (2017) 057 [arXiv:1610.02052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys.252 (2004) 189 [hep-th/0312171] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    N. Berkovits and E. Witten, Conformal supergravity in twistor-string theory, JHEP08 (2004) 009 [hep-th/0406051] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    J.J.M. Carrasco, C.R. Mafra and O. Schlotterer, Abelian Z-theory: NLSM amplitudes and α′-corrections from the open string, JHEP06 (2017) 093 [arXiv:1608.02569] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    C.R. Mafra and O. Schlotterer, Non-abelian Z -theory: Berends-Giele recursion for the α′-expansion of disk integrals, JHEP01 (2017) 031 [arXiv:1609.07078] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    J.J.M. Carrasco, C.R. Mafra and O. Schlotterer, Semi-abelian Z-theory: N LSM + ϕ3from the open string, JHEP08 (2017) 135 [arXiv:1612.06446] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2020

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Institute of Physics of the Czech Academy of Sciences & CEICOPragueCzech Republic
  3. 3.Instituto de Física TeóricaUniversidade Estadual PaulistaSão PauloBrazil

Personalised recommendations