Completing the scalar and fermionic universal one-loop effective action

Abstract

We extend the known Universal One-Loop Effective Action (UOLEA) by all operators which involve scalars and fermions, not including contributions arising from open covariant derivatives. Our generic analytic expressions for the one-loop Wilson coefficients of effective operators up to dimension six allow for an application of the UOLEA to a broader class of UV-complete models. We apply our generic results to various effective theories of supersymmetric models, where different supersymmetric particles are integrated out at a high mass scale.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. [2]

    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. [3]

    Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev.D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

  4. [4]

    F. Jegerlehner, The muon g − 2 in progress, Acta Phys. Polon.B 49 (2018) 1157 [arXiv:1804.07409] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept.117 (1985) 75 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    B.C. Allanach and A. Voigt, Uncertainties in the lightest C P even Higgs boson mass prediction in the minimal supersymmetric standard model: fixed order versus effective field theory prediction, Eur. Phys. J.C 78 (2018) 573 [arXiv:1804.09410] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    E. Bagnaschi et al., MSSM Higgs boson searches at the LHC: benchmark scenarios for run 2 and beyond, Eur. Phys. J.C 79 (2019) 617 [arXiv:1808.07542] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    A. Drozd, J. Ellis, J. Quevillon and T. You, The universal one-loop effective action, JHEP03 (2016) 180 [arXiv:1512.03003] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    S.A.R. Ellis, J. Quevillon, T. You and Z. Zhang, Extending the universal one-loop effective action: heavy-light coefficients, JHEP08 (2017) 054 [arXiv:1706.07765] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    B. Summ and A. Voigt, Extending the universal one-loop effective action by regularization scheme translating operators, JHEP08 (2018) 026 [arXiv:1806.05171] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  11. [11]

    M.K. Gaillard, The Effective One Loop Lagrangian With Derivative Couplings, Nucl. Phys.B 268 (1986) 669 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    O. Cheyette, Effective action for the standard model with large Higgs mass, Nucl. Phys.B 297 (1988) 183 [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    N. Haba, K. Kaneta, S. Matsumoto and T. Nabeshima, A simple method of calculating effective operators, Acta Phys. Polon.B 43 (2012) 405 [arXiv:1106.6106] [INSPIRE].

    Article  Google Scholar 

  14. [14]

    B. Henning, X. Lu and H. Murayama, How to use the Standard Model effective field theory, JHEP01 (2016) 023 [arXiv:1412.1837] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    B. Henning, X. Lu and H. Murayama, One-loop matching and running with covariant derivative expansion, JHEP01 (2018) 123 [arXiv:1604.01019] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    S.A.R. Ellis, J. Quevillon, T. You and Z. Zhang, Mixed heavy–light matching in the universal one-loop effective action, Phys. Lett.B 762 (2016) 166 [arXiv:1604.02445] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  17. [17]

    J. Fuentes-Martin, J. Portoles and P. Ruiz-Femenia, Integrating out heavy particles with functional methods: a simplified framework, JHEP09 (2016) 156 [arXiv:1607.02142] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    Z. Zhang, Covariant diagrams for one-loop matching, JHEP05 (2017) 152 [arXiv:1610.00710] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    F. Staub, From superpotential to model files for FeynArts and CalcHep/CompHEP, Comput. Phys. Commun.181 (2010) 1077 [arXiv:0909.2863] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  20. [20]

    F. Staub, Automatic calculation of supersymmetric renormalization group equations and self energies, Comput. Phys. Commun.182 (2011) 808 [arXiv:1002.0840] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  21. [21]

    F. Staub, SARAH 3.2: Dirac gauginos, UFO output and more, Comput. Phys. Commun.184 (2013) 1792 [arXiv:1207.0906] [INSPIRE].

  22. [22]

    F. Staub, SARAH 4: a tool for (not only SUSY) model builders, Comput. Phys. Commun.185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  23. [23]

    P. Athron et al., FlexibleSUSY — A spectrum generator generator for supersymmetric models, Comput. Phys. Commun.190 (2015) 139 [arXiv:1406.2319] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    P. Athron et al., FlexibleSUSY 2.0: extensions to investigate the phenomenology of SUSY and non-SUSY models, Comput. Phys. Commun.230 (2018) 145 [arXiv:1710.03760] [INSPIRE].

  25. [25]

    S. Das Bakshi, J. Chakrabortty and S.K. Patra, CoDEx: Wilson coefficient calculator connecting SMEFT to UV theory, Eur. Phys. J.C 79 (2019) 21 [arXiv:1808.04403] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    S. Das Bakshi, J. Chakrabortty and S.K. Patra, CoDEx: BSM physics being realised as an SMEFT, in Theory report on the 11th FCC-ee workshop, A Blondel et al. eds., arXiv:1905.05078.

  27. [27]

    R.D. Ball, Chiral gauge theory, Phys. Rept.182 (1989) 1 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys.B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].

  29. [29]

    B. Jantzen, Foundation and generalization of the expansion by regions, JHEP12 (2011) 076 [arXiv:1111.2589] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  30. [30]

    C.G. Callan Jr., Broken scale invariance in scalar field theory, Phys. Rev.D 2 (1970) 1541 [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    K. Symanzik, Small distance behavior in field theory and power counting, Commun. Math. Phys.18 (1970) 227 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  32. [32]

    E. Bagnaschi, G.F. Giudice, P. Slavich and A. Strumia, Higgs mass and unnatural supersymmetry, JHEP09 (2014) 092 [arXiv:1407.4081] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    W. Siegel, Supersymmetric dimensional regularization via dimensional reduction, Phys. Lett.B 84 (1979) 193.

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    C.G. Bollini and J.J. Giambiagi, Dimensional renormalization: the number of dimensions as a regularizing parameter, Nuovo Cim.B 12 (1972) 20 [INSPIRE].

    Google Scholar 

  35. [35]

    J.F. Ashmore, A method of gauge invariant regularization, Lett. Nuovo Cim.4 (1972) 289 [INSPIRE].

    Article  Google Scholar 

  36. [36]

    G.M. Cicuta and E. Montaldi, Analytic renormalization via continuous space dimension, Lett. Nuovo Cim.4 (1972) 329 [INSPIRE].

    Article  Google Scholar 

  37. [37]

    G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys.B 44 (1972) 189 [INSPIRE].

  38. [38]

    G. ’t Hooft, Dimensional regularization and the renormalization group, Nucl. Phys.B 61 (1973) 455 [INSPIRE].

  39. [39]

    D. Stöckinger, Regularization by dimensional reduction: consistency, quantum action principle and supersymmetry, JHEP03 (2005) 076 [hep-ph/0503129] [INSPIRE].

  40. [40]

    E. Bagnaschi, J. Pardo Vega and P. Slavich, Improved determination of the Higgs mass in the MSSM with heavy superpartners, Eur. Phys. J.C 77 (2017) 334 [arXiv:1703.08166] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    R. Huo, Effective field theory of integrating out sfermions in the MSSM: complete one-loop analysis, Phys. Rev.D 97 (2018) 075013 [arXiv:1509.05942] [INSPIRE].

  42. [42]

    J. Aebischer, A. Crivellin, C. Greub and Y. Yamada, The MSSM without gluinos; an effective field theory for the stop sector, Eur. Phys. J.C 77 (2017) 740 [arXiv:1703.08061] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    I. Jack et al., Decoupling of the epsilon scalar mass in softly broken supersymmetry, Phys. Rev.D 50 (1994) R5481 [hep-ph/9407291] [INSPIRE].

  44. [44]

    R. Delbourgo and V.B. Prasad, Supersymmetry in the four-dimensional limit, J. Phys.G 1 (1975) 377 [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    D.M. Capper, D.R.T. Jones and P. van Nieuwenhuizen, Regularization by dimensional reduction of supersymmetric and nonsupersymmetric gauge theories, Nucl. Phys.B 167 (1980) 479 [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    D. Stöckinger and J. Unger, Three-loop MSSM Higgs-boson mass predictions and regularization by dimensional reduction, Nucl. Phys.B 935 (2018) 1 [arXiv:1804.05619] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Benjamin Summ.

Additional information

ArXiv ePrint: 1908.04798

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krämer, M., Summ, B. & Voigt, A. Completing the scalar and fermionic universal one-loop effective action. J. High Energ. Phys. 2020, 79 (2020). https://doi.org/10.1007/JHEP01(2020)079

Download citation

Keywords

  • Effective Field Theories
  • Beyond Standard Model